

	Relation with effective graph resistance							
	• for $K_{N1,N2}$ $K(P) = N1 + N2 - \frac{3}{2}$							
	$D = \frac{2N_1N_2}{N_1 + N_2} \qquad H = \frac{N_1N_2(N_1 - N_2)^2}{(N_1 + N_2)^2} \qquad R_G = (N_1 + N_2)(\frac{N_2 - 1}{N_1} + \frac{N_1 - 1}{N_2} + \frac{1}{N_1 + N_2})$							
	$f = \frac{1 - 2N_1 - 2N_2}{2N_1 N_2}$							
innovation for life	• for $K_{N1,N2}$ $N = N1 + N2$ $f(N,L) = \frac{1-2N}{2L}$							

	Relation	with eff	ective gr	aph resis [.]	tance
Ta Ke	ble 1 meny's constant	and its app	oximations K	* for several gr	aphs.
G	raph	N	L	K(P)	K*(P)
K	10.15	25	150	23.50	23.50
Р	10	10	9	27.17	29.53
D	10	10	9	25.61	28.06
E	10.2	10	9	24.50	27.16
V	V(3, 10)	31	165	45.45	45.45
NO V	V'(3, 10, 5)	35	295	35.49	33.77
ovation V	$V''(3 \ 10 \ 5)$	35	285	35.54	34.67

A sharp upper bound • K*(P) is not an upper bound $K(P) = \zeta^T d - \frac{d^T Q^{\dagger} d}{2L} \leq \zeta^T d - \frac{H}{D\mu_1} \equiv K_U(P)$ FORE Wang, Dubbeldam, Van Mieghem (LAA;2017)

	A sharp uppe	er bound	
Та	ble 2		
Ke	emeny's constant and th	ne upper bound $K_U(P)$, for sev	veral graphs.
(Graph	<i>K</i> (<i>P</i>)	$K_U(P)$
	(10 15	23.50	23.50
1	2 ₁₀	27.17	27.28
1	D_{10}	25.61	25.71
1	510.2	24.50	24.61
I	W(3, 10)	45.45	45.45
	N'(3, 10, 5)	35.49	35.49
n I	<i>W</i> ″(3, 10, 5)	35.54	35.54

Real-world networks

Table 3

Kemeny's constant, the approximations K^* and the upper bound K_U , for the smallest and largest networks in the Internet Topology Zoo.

Graph	Ν	L	<i>K</i> (<i>P</i>)	<i>K</i> *	K _U
Arpanet196912	4	4	2.54	2.73	2.60
Renam	5	4	3.50	3.50	3.50
Mren	6	5	4.50	4.50	4.50
UsCarrier	158	189	1175.99	1265.48	1176.68
Cogentco	197	245	1082.45	1197.24	1083.35
Kdl	754	899	5907.29	6264.78	5908.32
innovation for life TU Delft					

Real-world networks

Table 4

Statistics for the absolute value of the relative errors for the approximations K^* and the upper bound K_U , for 243 real-world networks.

Metric	К*	K _U
Average absolute rel. error	27.25%	0.73%
Maximum absolute rel. error	122.60%	8.05%

