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Introduction

How much vaccine is required by any given country year by year to create

herd immunity to block the transmission of a virus within a population?

If immunity is short lived → vaccination strategies: maximize the

population coverage, minimize the number of deaths/cases/hospital

burden, optimal containment of potential outbreaks, minimize the

expected years of life lost due to deaths in each age groups, etc.

Vaccination strategy: define a prophylactic distribution of a limited

stockpile of vaccine year by year.

Take into account the population heterogeneity.
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Demography (2008)

Age group Belgium Germany Italy Netherlands Peru Zimbabwe

[0, 18) 0.207 0.179 0.171 0.219 0.361 0.491

[18, 60) 0.572 0.573 0.577 0.588 0.550 0.465

60+ 0.221 0.249 0.251 0.193 0.089 0.044

Population fraction fi for each age group in the considered countries.
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The social contact matrix

cij : mean contact rate between a susceptible of age group i and

individuals of age group j

↪→ C = (cij) is the social contact matrix

It is the central ingredient in our study.

β: transmission probability through an infectious contact (S-I).

Incidence term:

βcijSi
Ij
Nj

7th of July 2021 4th Girona-Delft workshop 4



Examples of social contact matrices1

(a) The Netherlands (b) Perú

(c) Zimbabwe

1http://www.socialcontactdata.org/socrates/
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The SIRV model

Assuming an arbitrary vaccination strategy {wi}3i=1, and ignoring the

demographics, the equations governing the epidemics dynamics are

dSi

dt
= −

3∑
j=1

βcijSi
Ij
Nj

+ δiRi + δvi Vi − piwi
Si

Ni
,

dIi
dt

= −
3∑

j=1

βcijSi
Ij
Nj
− γiIi,

dRi

dt
= γiIi − δiRi − piwi

Ri

Ni
,

dVi
dt

= pi
wi

Ni
(Si +Ri)− δvi Vi,

with Si + Ii +Ri + Vi = Ni, i = 1, 2, 3.
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If si = Si

Ni
, yi = Ii

Ni
, ri = Ri

Ni
, vi = Vi

Ni
, and neglecting the last equation

dsi
dt

= −
3∑

j=1

βcijsiyj + δiri + δvi vi − piw̄isi, (1)

dyi
dt

= −
3∑

j=1

βcijsiyj − γiyi, (2)

dri
dt

= γiyi − δiri − piw̄iri, (3)

with si + yi + ri + vi = 1, and w̄i := wi

Ni
(i = 1, 2, 3) is the per capita

vaccination rate of age group i.

From the constraint
∑3

i=1 wi = w and the definition of w̄i, it follows

that
∑3

i=1 w̄ifi = w
N =: w̄, the mean per capita vaccination rate.
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The Disease-free equilibrium

The disease-free equilibrium (DFE) of system (1)-(3) is (s∗i , 0, 0) with

s∗i =
δvi

piw̄i + δvi
, v∗i = 1− s∗i (i = 1, 2, 3)

↪→ Only susceptible and vaccinated individuals are present.
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Maximum vaccination coverage

The condition on the per capita vaccination rates w̄i for having a

maximum vaccination coverage of the population at the DFE →

minimize the susceptible population at the DFE: s∗ =
3∑

i=1

fis
∗
i .

The condition ∇s∗(w̄1, w̄2) = (0, 0) and the positivity of the rates

amount to

p1w̄1 + δv1√
p1δv1

=
p2w̄2 + δv2√

p2δv2
=
p3w̄3 + δv3√

p3δv3
(4)

with the constraint
∑3

i=1 w̄ifi = w̄.

From these equations for two of the three w̄i, one easily obtains an

explicit expression for the solution w̄∗
i .
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From (4) we have that, if the rate of immunity loss is the same for

the vaccinated individuals of all the age groups and the probability

of being protected after vaccination is the same across age groups,

then the vaccination rates that guarantee the maximum fraction of

vaccinated population are w̄i = w̄.

↪→ This corresponds to a uniformly random mass vaccination.
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R0 and R∗0

The basic reproduction number for an age-structured epidemic

model is given by the dominant eigenvalue of the so-called

next-generation matrix Ng at the DFE without vaccination (R0)

and with it (R∗
0).

Assuming the same β for all the age groups and without

vaccination,

Ng = β C diag(1/γi)

where γi is the recovery rate of the age group i.
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R0 and R∗0

To compare the impact of the vaccination strategy, in each country

β is chosen to give R0 = 2.5.

In the presence of vaccinated individuals, s∗i < 1 and Ng becomes

N∗
g = β diag(s∗i )C diag(1/γi)

where s∗i is given by the DFE of the model (s∗i + v∗i = 1).

↪→ R∗
0 is the dominant eigenvalue of N∗

g : R∗
0(w̄1, w̄2)
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R∗0 and uniform mass vaccinatiom

In this case, w̄i = w̄ (i = 1, 2, 3) and R∗
0 only depends on w̄:
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Examples of critical vaccination rates
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Example of a graph of R∗0(w̄1, w̄2)

Belgium

Constraint on the vaccination rates: w̄1 + w̄2 + w̄3 = w̄c
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S(w̄1, w̄2) at R∗0 = 1
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Contour plots of R∗0

(a) The Netherlands (b) Belgium

(c) Perú (d) Zimbabwe
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Vaccination coverages
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