
1

Universal mean-field framework
(UMFF)

for SIS epidemics on networks

1

Piet Van Mieghem

in collaboration with Karel Devriendt

Advances on Epidemics in Complex Networks
Delft
31 August-1 September 2017

Outline

Exact SIS prevalence

Universal mean-field framework (UMFF)

Ø Idea
Ø Framework

2



2

Continuous-time SIS model on networks
• Constant infection rate b on all links 
• Constant curing rate d for all nodes
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t = b /d : effective spreading rate

Healthy

b

d

Infected
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1

Infected

Infection and curing are independent Poisson processes

Xj t( ) =1 node j  is infected at time t

X j t( ) = 0 node j  is healthy at time t
 

 

P. Van Mieghem, J. Omic, R. E. Kooij, “Virus Spread in Networks”,
IEEE/ACM Transaction on Networking, Vol. 17, No. 1, pp. 1-14, (2009).

Governing SIS equation for node j
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dE[Xj ]

dt
= E −δXj + (1− Xj )β akjXk

k=1

N

∑










if infected:
probability of
curing per
unit time

time-change of
E[Xj] = Pr[Xj = 1],
probability that 
node j is infected

if not infected (healthy):
probability of
infection per
unit time

dE[Xj ]

dt
= −δE Xj

 +β akjE Xk[ ]
k=1

N

∑ −β akjE X jXk
 

k=1

N

∑

R. Pastor-Satorras, C. Castellano, P. Van Mieghem and A. Vespignani, 
“Epidemic processes in complex networks”, Review of Modern Physics, 
2015
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SIS Prevalence
• Fraction of infected nodes in the graph G
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S t( ) = 1
N

Xj t( )
j=1

N

∑

• Prevalence: Expected fraction of infected nodes in G

y t( ) = E S t( )!" #$=
1
N

Pr Xj t( ) =1!" #$
j=1

N

∑

P. Van Mieghem, 2016, "Approximate formula and bounds for 
the time-varying SIS prevalence in networks", Physical Review E, 
Vol. 93 No. 5, p. 052312.

(random variable!)

Differential equation prevalence
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dE[Xj ]

dt
= E −δXj + (1− Xj )β akjXk

k=1

N

∑








Summing                                                     over all nodes:

d
δdt
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∑
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where w is the nodal random 
Bernoulli vector 

y t( ) = 1
N

E Xj
!" #$

j=1

N

∑Using the definition of prevalence

!! 1− 𝑋% 𝑎'%𝑋' = 𝑢 − 𝑤 +𝐴𝑤
-

'./

-

%./

and

w = X1,X2,…,XN( )
𝑑𝑦 𝑡∗

𝑑𝑡∗ = −𝑦 𝑡∗ +
𝜏
𝑁 𝐸 𝑢 − 𝑤 +𝐴𝑤

dy t*( )
dt*

= −y t*( )+ τN E wTQw"# $%

Finally, if A is symmetric, the SIS prevalence is written in terms of 
the Laplacian Q = D – A  and the normalized time t* = d t

P. Van Mieghem, F. Darabi Sahneh and C. Scoglio, 2014, "Exact Markovian
SIR and SIS epidemics on networks and an upper bound for the epidemic
threshold", Proceedings of the 53rd IEEE Conference on Decision and 

Control (CDC’14), December 15-17, Los Angeles, CA, USA 
(also on http://arxiv.org/abs/1402.1731).



4

“Local rule - global emergent properties” class
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dy t*( )
dt*

= −y t*( )+ τN E wT t*( )Qw t*( )"
#

$
%

dE[Xj t( )]
dt

= E −δXj t( )+ (1− Xj t( ))β akjXk t( )
k=1

N

∑
#

$
%

&

'
(

The Laplacian Q = D – A
The normalized time t* = d t
Bernoulli state vector
w t*( ) = X1 t

*( ),X2 t*( ),…,XN t*( )( )

Local SIS rule

Global emergent SIS spread

P. Van Mieghem, 2016, "Approximate formula and bounds for 
the time-varying SIS prevalence in networks", Physical Review E, 
Vol. 93 No. 5, p. 052312.

SIS prevalence dynamics
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dy t*( )
dt*

= −y t*( )+ τN E wT t*( )Qw t*( )"
#

$
%

Set of susceptible nodes
at time t*

Set of infected nodes
at time t*

Cut-Set: set of links with 1 
infected node at time t*

NS t*( ) = 7
wT t*( )Qw t*( ) =126

P. Van Mieghem, 2016, "Universality of the SIS prevalence in networks", 
Delft University of Technology, report20161006
(http://arxiv.org/abs/1612.01386).
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Devriendt, K. and P. Van Mieghem, 2017, ”Universal mean-field framework
for SIS epidemics on networks, based on graph partitioning and the 
isoperimetric inequality", arXiv 1706.10132
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Continuous-time Markovian SIS 
epidemics on networks

Problems:
- 2N states
- Complex structure
- Insight?

Approximate

N = 4 nodes

10
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Markov theory
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Regular bipartite Markov graph

Van Mieghem, P. and E. Cator, e-SIS epidemics and the epidemic threshold,
Physical Review E, vol. 86, No. 1, July, p. 016116, 2012

Recursive structure of infinitesimal general QN

Simon, P., M. Taylor and I. Z. Kiss, Exact epidemic models on graphs using graph-automorphism
driven lumping, Mathematical Biology, Vol. 62, pp. 479-508, 2011

A. Economou, A. Gómez-Corral, M. López-García, A stochastic SIS epidemic model with 
heterogeneous contacts, Physica A, Volume 421, 1 March 2015, Pages 78-97

UMFF (1): New variable = #infected nodes

2N States

N+1 states

Problem:
Infection rate = 
𝛽	x # infective links

2𝛽

𝛽

birth rate?

0 1 2 3 4

4𝛿3𝛿2𝛿𝛿
12
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UMFF (2): approximation

Volume
Surface

#	𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑙𝑖𝑛𝑘𝑠 ≈ 𝑓(#𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑	𝑛𝑜𝑑𝑒𝑠)

2 3
f(2)

3𝛿
……

idea: isoperimetric problem in geometry

13
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Universal Mean-Field framework
• UMFF = General approximation framework for SIS:

o Contains existing methods (NIMFA, HMF, pQMF, …)
o Bounds on approximations

• UMFF principles:
o Graph partitioning
o Two approximation steps:

ØTopological approximation: isoperimetric 
inequality

ØMoment-closure approximation

Devriendt, K. and P. Van Mieghem, 2017, ”Universal mean-field framework
for SIS epidemics on networks, based on graph partitioning and the 
isoperimetric inequality", arXiv 1706.10132
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Partitioning
• Graph partitioned into K non-overlapping subgraphs
• Count #infected in each partition

𝑊N/ 𝑡 =2
𝑊NO 𝑡 =2

𝑊NP 𝑡 = 0

𝑾S(𝑡) = 	
𝑊N/(𝑡)
𝑊NO(𝑡)
𝑊NP(𝑡)

0 ≤ 𝑊N/ 𝑡 ≤ 4
0 ≤ 𝑊NO 𝑡 ≤ 4
0 ≤ 𝑊NP 𝑡 ≤ 1

𝑊 𝑡 = 	

1
0
0
1
0
0
1
0
1

16
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Closing the equations: idea
𝑑𝑬[𝑦(𝑡)]

𝑑𝑡 = −𝛿𝑬 𝑦 𝑡 +
𝛽
𝑁𝑬 𝑤+𝑄𝑤

𝑑𝑬[𝑦(𝑡)]
𝑑𝑡 = −𝛿𝑬 𝑦 𝑡 + 𝛽𝑓 𝑬 𝑦 𝑡

isoperimetric idea: “Volume” instead of “surface”
Infected volume

Healthy volume

Infective surface
17

The isoperimetric inequality (1)
• iso-perimetric (h ish periodos) →	“same perimeter”

o Ancient Greeks: what is the maximal area A that can be 
enclosed by a curve with a given perimeter P

o Solution: In the plane, 𝑃O ≥ 4𝜋𝐴 holds with equality for 
the circle

• Generalizations (20th century)
o Higher dimensions, curved space, manifolds, graphs, …

• Cut-set: volume vs surface!

V. Blasjo. “The evolution of the isoperimetric problem” Mathematical 
Association of America, 2005

18
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The isoperimetric inequality (2)

𝑤+𝑄𝑤 − ]^_
-`/

𝑌 𝑁 − 𝑌 ≤
bcd

efgfhie
h

hie
]^_`jg

-
𝑌 𝑁 − 𝑌

Chung, F. Discrete Isoperimetric Inequalities. DMTCS, 1996

Eigenvalues of Laplacian	𝑄:	𝜇-= 0 ≤ 𝜇-`/ ≤ ⋯ ≤ 𝜇/; Average degree: 𝑑uv; 
Number of infected nodes: Y

exact for complete graph (all non-zero 𝜇w = 𝑁)

Isoperimetric ineq. relates to Szemeredi’s regularity theorem 

]x
]y
= −𝛿𝑌 + 𝛽𝑌 𝑁 − 𝑌

𝑑𝑬[𝑦(𝑡)]
𝑑𝑡 = −𝛿𝑬 𝑦 𝑡 +

𝛽
𝑁𝑬 𝑤+𝑄𝑤

logistic diff. eq.

19

UMFF
o SIS dynamics of Y (=number of infected nodes)

ü Split nodes in K partitions
ü Graph consists of disconnected and bipartite graphs

o UMFF equations for the prevalence of partition k
𝑑𝑬[𝑌']
𝑑𝑡 = −𝛿𝑬 𝑌' + 𝛽 !

𝐿'{
𝑁'𝑁{

𝑁' − 𝑬[𝑌'] 𝑬 𝑌{

|

{./

Curing Infection due to each other partition m
• 𝑚 ≠ 𝑘:	Bipartite approximation 
• 𝑚 = 𝑘: Classical approximation

A = = +
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Szemerédi’s regularity lemma (SRL)
SRL: Deep mathematical theorem: “Stone of Rosetta”

any large graph has an 𝜖-regular partitioning

𝜖-regular partitioning relates to isoperimetry
good overall UMFF approximation

Translated: SIS on large graphs is 𝜖-similar to “scaled” SIS on 
smaller graphs
(+ many technical details & caveats)

UMFF

Isoperimetry

SRL
25

UMFF contains NIMFA
• N-Intertwined Mean-Field Approximation (NIMFA)

o Only moment-closure approximation
• NIMFA equations:

𝑑𝐸 𝑊Nw
𝑑𝑡 = −𝛿𝐸 𝑊Nw + 𝛽 ! 𝑎w{𝐸 𝑊N{ 1 − 𝐸 𝑊Nw

-

{./
i = node index
𝐸 𝑊Nw = infection probability of node i
𝑎w% = adjacency element; 𝑎w%=1 if node i and j are linked

UMFF with K=N partitions is NIMFA

P. Van Mieghem, 2011, "The N -Intertwined SIS epidemic network 
model", Computing (Springer), Vol. 93, Issue 2, p. 147-169.

𝑑𝑬[𝑌']
𝑑𝑡 = −𝛿𝑬 𝑌' + 𝛽 !

𝐿'{
𝑁'𝑁{

𝑁' − 𝑬[𝑌'] 𝑬 𝑌{

|

{./

26
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UMFF contains HMF
Heterogeneous mean-field (HMF)

o Based completely on degree distribution 
HMF equations:

𝑑𝐸 𝑊N]�
𝑑𝑡 = −𝛿𝐸 𝑊N]� + 𝛽 ! 𝑎�]�]�𝐸 𝑊N]� 𝑁]� − 𝐸 𝑊N]�

]�^�

]�.]�g�

𝑁]� = number of nodes with degree 𝑑'
𝐸 𝑊N]� = expected number of infected nodes of degree 𝑑'
𝑎�]�]� = connection probability between nodes of degree 𝑑{	and 𝑑'

Pastor-Satorras, R. and Vespignani, A., 2001, " Epidemic dynamics
and endemic states in complex networks ", Physical Review E, 
vol. 63, pp. 066117.

UMFF with degree-partitions is equivalent to HMF

𝑑𝜌'
𝑑𝑡 = −𝛿𝜌' + 𝛽𝑘 1 − 𝜌' Θ Θ = ! 𝜌'

𝑑{𝑃𝑟 𝐷 = 𝑑{
∑ 𝑑�𝑃𝑟 𝐷 = 𝑑�
]�^�
]�.]�g�

]�^�

]�.]�g�

HMF equations (rewritten into UMFF form):

27

Conclusion
• The prevalence y(t) in networks: 

o premier indicator of epidemic spread in networks

o time-dependence hardly studied

o mainly determined by the cut-set, i.e. the number of infective links

• UMFF: universal mean-field framework based on 
isoperimetric inequality and graph partitioning
o with links to Szemerédi’s regularity lemma

o contains a.o. both HMF (Pastor-Satorras & Vespignani) and NIMFA

o general bounds of mean-field approximations by isoperimetric 
inequality

30
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Books

31Articles:   http://www.nas.ewi.tudelft.nl
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Thank You

Piet Van Mieghem
NAS, TUDelft

P.F.A.VanMieghem@tudelft.nl


