Temporal profiles of avalanches on networks

James P. Gleeson MACSI, Department of Mathematics and Statistics, University of Limerick

Rick Durrett

Department of Mathematics, Duke University

www.ul.ie/gleeson

UNIVERSITY of LIMERICK

OLLSCOIL LUIMNIGH

@gleesonj

james.gleeson@ul.ie

Collaborators, funding, references

- Kevin O'Sullivan, UL
- Yamir Moreno, Zaragoza
- Raquel A Baños, Zaragoza
- Jonathan Ward, Leeds
- William Lee, Portsmouth

- Science Foundation Ireland
- SFI/HEA Irish Centre for High-End Computing (ICHEC)

 Gleeson and Durrett, "Temporal profiles of avalanches on networks", arXiv: 1612.06477

OLLSCOIL LUIMNIGH

UNIVERSITY of LIMERICK

Overview

- Prologue: criticality in a model of meme diffusion on Twitter
- 1. Average avalanche shape functions (and beyond...)
- 2. Analytical results
- 3. Numerical simulations

 A simplified version of the model of Weng, Flammini, Vespignani and Menczer, "Competition among memes in a world with limited attention" Scientific Reports 2, 335 (2012)

• Network structure: a node has k followers (out-degree k) with probability p_k (mean degree $z = \sum k p_k$)

- Network structure: a node has k followers (out-degree k) with probability p_k (mean degree $z = \sum k p_k$)
- Each node (of *N*) has a *memory screen*, which holds the meme of current interest to that node. Each screen has capacity for only one meme.

- Network structure: a node has k followers (out-degree k) with probability p_k (mean degree $z = \sum k p_k$)
- Each node (of *N*) has a *memory screen*, which holds the meme of current interest to that node. Each screen has capacity for only one meme.

- During each time step (with time increment $\Delta t = 1/N$), one node is chosen at random.
- With probability μ , the selected node *innovates*, i.e., generates a brandnew meme, that appears on its screen, and is tweeted (broadcast) to all the node's followers.

- During each time step (with time increment $\Delta t = 1/N$), one node is chosen at random.
- With probability μ , the selected node *innovates*, i.e., generates a brandnew meme, that appears on its screen, and is tweeted (broadcast) to all the node's followers.

- During each time step (with time increment $\Delta t = 1/N$), one node is chosen at random.
- With probability μ , the selected node *innovates*, i.e., generates a brandnew meme, that appears on its screen, and is tweeted (broadcast) to all the node's followers.

- During each time step (with time increment $\Delta t = 1/N$), one node is chosen at random.
- With probability μ , the selected node *innovates*, i.e., generates a brandnew meme, that appears on its screen, and is tweeted (broadcast) to all the node's followers.

Examples of retweet avalanches from model

Competition-induced criticality in the $\mu \rightarrow 0$ limit

Competition-induced criticality: competition between memes for the limited resource of user attention induces criticality in the $\mu \rightarrow 0$ limit

• Phys. Rev. Lett., 112, 048701 (2014)

Competition-induced criticality: comparison with data

Competition-induced criticality: competition between memes for the limited resource of user attention induces criticality in the $\mu \rightarrow 0$ limit

• Phys. Rev. X., 6, 021019 (2016)

Overview

- Prologue: criticality in a model of meme diffusion on Twitter
- 1. Average avalanche shape functions (and beyond...)
- 2. Analytical results
- 3. Numerical simulations

Criticality: going beyond power-law avalanche size distributions

From Sethna et al., 2001 "Crackling noise", Nature, 410: 242 From Pinto and Muñoz, 2011 "Quasi-neutral theory of epidemic outbreaks", PLoS ONE, 6:e21946

Average avalanche temporal profiles

From Sethna et al., 2001 "Crackling noise", Nature, 410: 242

Criticality and the average avalanche shape

Criticality and the average avalanche shape

Examples of average avalanche shape analysis

From Friedman et al., 2012 "Universal critical dynamics in high resolution neuronal avalanche data", Phys. Rev. Lett., 108: 208102

Examples of nonsymmetric average avalanche shapes

From Papanikolaou et al., 2011 "Universality beyond power laws and the average avalanche shape", Nature Physics, 7: 316 From Sethna et al., 2001 "Crackling noise", Nature, 410: 242

Examples of nonsymmetric average avalanche shapes

From Friedman et al., 2012 "Universal critical dynamics in high resolution neuronal avalanche data", Phys. Rev. Lett., 108: 208102

Cascade models: examples

• Threshold model (undirected network)

• Neuronal dynamics model of Friedman et al. (directed network)

The weight ϕ_{ij} of each directed edge from neuron *i* to neuron *j* is assigned randomly from a uniform distribution on $[0, \phi_{max}]$. When neuron *i* fires (becomes active), it causes neuron *j* to become active (in the next discrete time step) with probability ϕ_{ij} . After a neuron fires, it returns to the inactive state in the next time step.

Meme diffusion model (directed network)

• Directed network:

$$q_k = \sum_j \frac{j}{z} p_{jk} \, v_{jk}$$

A node with in-degree j and out-degree k is *vulnerable* with probability v_{jk} : This is the probability that the activation of a single in-neighbour (at time t_1) will lead to the activation of the node at some time $t > t_1$, assuming that no other in-neighbour of the node becomes active by time t.

• Directed network:

$$q_k = \sum_j \frac{j}{z} p_{jk} \, v_{jk}$$

A node with in-degree j and out-degree k is *vulnerable* with probability v_{jk} : This is the probability that the activation of a single in-neighbour (at time t_1) will lead to the activation of the node at some time $t > t_1$, assuming that no other in-neighbour of the node becomes active by time t.

• Example: Neuronal dynamics model of Friedman et al.

$$v_{jk} = \frac{\phi_{max}}{2}$$

• Undirected network:

$$q_k = \frac{k+1}{z} p_{k+1} v_{k+1}$$

A node with degree k + 1 (i.e., with k inactive neighbours) is vulnerable with probability v_{k+1} : This is the probability that the activation of a single neighbour (at time t_1) will lead to the activation of the node at some time $t > t_1$, assuming that no other neighbour of the node becomes active by time t.

• Undirected network:

$$q_k = \frac{k+1}{z} p_{k+1} v_{k+1}$$

A node with degree k + 1 (i.e., with k inactive neighbours) is vulnerable with probability v_{k+1} : This is the probability that the activation of a single neighbour (at time t_1) will lead to the activation of the node at some time $t > t_1$, assuming that no other neighbour of the node becomes active by time t.

• Example: Threshold model

$$v_{k+1} = C(1)$$

CDF of thresholds

node of degree k + 1 is activated by a single active neighbour iff its threshold is less than 1 Effective branching number

• The effective branching number is the mean of the offspring distribution:

$$\xi = \sum_k k \ q_k$$

A process is

- critical if $\xi = 1$
- subcritical if $\xi < 1$
- supercritical is $\xi > 1$
- Define the probability generating function (PGF) f(x) by

$$f(x) = \sum_{k=0}^{\infty} q_k x^k$$

so that the effective branching number is $\xi = f'(1)$

Overview

- 1. Average avalanche shape functions (and beyond...)
- 2. Analytical results
- 3. Numerical simulations

Calculating the average avalanche shape using Markovian branching process theory

- Given: avalanche duration T and the offspring distribution q_k (and hence PGF f(x))
- First, solve the ordinary differential equation

$$\frac{dQ}{dt} = f(Q) - Q \quad \text{for } Q(t) \text{ with } Q(0) = 0$$

• Then, using the solution Q(t) and the PGF gives the average avalanche shape function as

$$A(t) = Q(T-t)\frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

Continuous-time Markov branching processes ۲

$$P_{1j}(t) = P\{Z(\tau + t) = j \mid Z(\tau) = 1\}$$

$$F(s,t) = \sum_{k} P_{1k}(t) s^{k}$$

Probability of extinction by time *t*: ۲

$$Q(t) = P\{Z(t) = 0 \mid Z(0) = 1\} = F(0, t)$$

Avalanche path probability: ۲

$$\pi_n(t) = P\{Z(t) = n \mid Z(0) = 1 \text{ and } Z(T) = 1\}$$

$$\pi_n(t) \propto P_{1n}(t)P_{n1}(T-t)$$

$$P_{n1}(T-t) = n[P_{10}(T-t)]^{n-1}P_{11}(T-t)$$

$$\pi_{n}(t) = \frac{P_{1n}(t)n[P_{10}(T-t)]^{n-1}P_{11}(T-t)}{\sum_{m}P_{1m}(t)m[P_{10}(T-t)]^{m-1}P_{11}(T-t)} \qquad \frac{\partial}{\partial t}F(s,t) = [f(s) - s]F'(s,t)$$

$$\frac{\partial}{\partial t}F(s,t) = f(F(s,t)) - F(s,t)$$
ge avalanche shape:

Л

(T

$$A(t) = \sum_{n} n \,\pi_n(t) - 1 = Q(T-t) \frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

Continuous-time Markov branching processes ۲

$$P_{1j}(t) = P\{Z(\tau + t) = j \mid Z(\tau) = 1\}$$

$$F(s,t) = \sum_{k} P_{1k}(t) s^{k}$$

Probability of extinction by time *t*: ۲

$$Q(t) = P\{Z(t) = 0 \mid Z(0) = 1\} = F(0, t)$$

Avalanche path probability: ۲

$$\pi_n(t) = P\{Z(t) = n \mid Z(0) = 1 \text{ and } Z(T) = 1\}$$

$$\pi_n(t) \propto P_{1n}(t) P_{n1}(T-t)$$

$$P_{n1}(T-t) = n[P_{10}(T-t)]^{n-1}P_{11}(T-t)$$

$$\pi_n(t) = \frac{P_{1n}(t)n[P_{10}(T-t)]^{n-1}P_{11}(T-t)}{\sum_m P_{1m}(t)m[P_{10}(T-t)]^{m-1}P_{11}(T-t)} \qquad \frac{\partial}{\partial t}F(s,t) = [f(s)-s]F'(s,t)$$

$$\frac{\partial}{\partial t}F(s,t) = f(F(s,t)) - F(s,t)$$
ge avalanche shape:

Л

(T

$$A(t) = \sum_{n} n \,\pi_n(t) - 1 = Q(T-t) \frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

Continuous-time Markov branching processes ۲

$$P_{1j}(t) = P\{Z(\tau + t) = j \mid Z(\tau) = 1\}$$

$$F(s,t) = \sum_{k} P_{1k}(t) s^{k}$$

Probability of extinction by time *t*: ۲

$$Q(t) = P\{Z(t) = 0 \mid Z(0) = 1\} = F(0, t)$$

Avalanche path probability: ۲

$$\pi_n(t) = P\{Z(t) = n \mid Z(0) = 1 \text{ and } Z(T) = 1\}$$

 $\pi_n(t) \propto \underline{P_{1n}(t)} P_{n1}(T-t)$

(ጥ

ת]..

$$P_{n1}(T-t) = n[P_{10}(T-t)]^{n-1}P_{11}(T-t)$$

$$\pi_n(t) = \frac{P_{1n}(t)n[P_{10}(T-t)]^{n-1}P_{11}(T-t)}{\sum_m P_{1m}(t)m[P_{10}(T-t)]^{m-1}P_{11}(T-t)} \qquad \frac{\partial}{\partial t}F(s,t) = [f(s)-s]F'(s,t)$$

$$\frac{\partial}{\partial t}F(s,t) = f(F(s,t)) - F(s,t)$$

ח

/m

$$A(t) = \sum_{n} n \,\pi_n(t) - 1 = Q(T-t) \frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

• Continuous-time Markov branching processes

$$P_{1j}(t) = P\{Z(\tau + t) = j \mid Z(\tau) = 1\}$$

$$F(s,t) = \sum_{k} P_{1k}(t)s^{k}$$

• Probability of extinction by time *t*:

$$Q(t) = P\{Z(t) = 0 \mid Z(0) = 1\} = F(0, t)$$

• Avalanche path probability:

$$\pi_n(t) = P\{Z(t) = n \mid Z(0) = 1 \text{ and } Z(T) = 1\}$$

 $\pi_n(t) \propto P_{1n}(t) P_{n1}(T-t)$

$$P_{n1}(T-t) = n[P_{10}(T-t)]^{n-1}P_{11}(T-t)$$

$$\pi_{n}(t) = \frac{P_{1n}(t)n[P_{10}(T-t)]^{n-1}P_{11}(T-t)}{\sum_{m}P_{1m}(t)m[P_{10}(T-t)]^{m-1}P_{11}(T-t)} \qquad \frac{\partial}{\partial t}F(s,t) = [f(s)-s]F'(s,t)$$
we avalanche shape:
$$\frac{\partial}{\partial t}F(s,t) = f(F(s,t)) - F(s,t)$$

$$A(t) = \sum_{n} n \,\pi_n(t) - 1 = Q(T-t) \frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

Continuous-time Markov branching processes

$$P_{1j}(t) = P\{Z(\tau + t) = j \mid Z(\tau) = 1\}$$

$$F(s,t) = \sum_{k} P_{1k}(t)s^{k}$$

• Probability of extinction by time *t*:

$$Q(t) = P\{Z(t) = 0 \mid Z(0) = 1\} = F(0, t)$$

• Avalanche path probability:

$$\pi_n(t) = P\{Z(t) = n \mid Z(0) = 1 \text{ and } Z(T) = 1\}$$

 $\pi_n(t) = \frac{P_{1n}(t)n[P_{10}(T-t)]^{n-1}P_{11}(T-t)}{F'(0,T)}$

$$\pi_n(t) \propto P_{1n}(t) P_{n1}(T-t)$$

$$P_{n1}(T-t) = n[P_{10}(T-t)]^{n-1}P_{11}(T-t)$$
$$\frac{\partial}{\partial t}F(s,t) = [f(s) - s]F'(s,t)$$
$$\frac{\partial}{\partial t}F(s,t) = f(F(s,t)) - F(s,t)$$

$$A(t) = \sum_{n} n \,\pi_n(t) - 1 = Q(T-t) \frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

Continuous-time Markov branching processes

$$P_{1j}(t) = P\{Z(\tau + t) = j \mid Z(\tau) = 1\}$$

$$F(s,t) = \sum_{k} P_{1k}(t)s^{k}$$

• Probability of extinction by time *t*:

$$Q(t) = P\{Z(t) = 0 \mid Z(0) = 1\} = F(0, t)$$

• Avalanche path probability:

$$\pi_n(t) = P\{Z(t) = n \mid Z(0) = 1 \text{ and } Z(T) = 1\}$$

 $\pi_n(t) = \frac{P_{1n}(t)n[P_{10}(T-t)]^{n-1}P_{11}(T-t)}{F'(0,T)}$

$$\pi_n(t) \propto P_{1n}(t) P_{n1}(T-t)$$

$$P_{n1}(T-t) = n[P_{10}(T-t)]^{n-1}P_{11}(T-t)$$
$$\frac{\partial}{\partial t}F(s,t) = [f(s) - s]F'(s,t)$$
$$\frac{\partial}{\partial t}F(s,t) = f(F(s,t)) - F(s,t)$$

$$A(t) = \sum_{n} n \,\pi_n(t) - 1 = Q(T-t) \frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

$$A(t) = Q(T-t)\frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

 q_k Poisson, $\xi = 1$ (critical)

$$A(t) = Q(T-t)\frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

T=20, 40, 80 scaled avg. avalanche shape 1 0.8 0.6 0.4 0.2 0<u></u> 0.2 0.6 0.4 0.8 1 t/T

 q_k Poisson, $\xi = 1$ (critical)

$$A(t) = Q(T-t)\frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

 q_k Poisson, $\xi = 0.8$ (subcritical)

$$A(t) = Q(T-t)\frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

 q_k Poisson, $\xi = 0.8$ (subcritical)

$$A(t) = Q(T-t)\frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

 q_k Poisson, $\xi = 1.2$ (supercritical)

$$A(t) = Q(T-t)\frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

 q_k Poisson, $\xi = 1.2$ (supercritical)

$$A(t) = Q(T-t)\frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

 $q_k \sim k^{-\gamma}$ with $\gamma=2.3,\,\xi=1\,$ (critical)

$$A(t) = Q(T-t)\frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

 $q_k \sim k^{-\gamma}$ with $\gamma = 2.3, \xi = 1$ (critical) γ=2.3; T=40, 80, 160 scaled avg. avalanche shape 1 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 t/T

$$A(t) = Q(T-t)\frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

 $q_k \sim k^{-\gamma}$ with $\gamma = 2.5, \xi = 1$ (critical) γ=2.5; T=40, 80, 160 scaled avg. avalanche shape 1 0.8 0.6 0.4 0.2 0, 0.2 0.4 0.6 0.8 t/T

$$A(t) = Q(T-t)\frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

 $q_k \sim k^{-\gamma}$ with $\gamma = 3.5, \xi = 1$ (critical) γ=3.5; T=40, 80, 160 scaled avg. avalanche shape 1 0.8 0.6 0.4 0.2 0[,] 0.2 0.4 0.6 0.8 t/T

$$A(t) = Q(T-t)\frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

 $q_k \sim k^{-\gamma}$ with $\gamma = 2.3, \xi = 1$ (critical)

Nonsymmetric avalanche shape functions occur when the offspring distribution has a power-law tail: $q_k \sim k^{-\gamma}$ with $2 < \gamma < 3$

Asymptotics for average avalanche shape functions

$$A(t) = Q(T-t)\frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

Large-*T* asymptotics for critical case ($\xi = 1$):

 $A(t) \sim \begin{cases} \frac{t}{T} \left(1 - \frac{t}{T}\right) & \text{if } q_k \text{ has finite second moment} \\ \frac{t}{T} \left(1 - \frac{t}{T}\right)^{\overline{\gamma - 2}} & \text{if } q_k \sim k^{-\gamma} \text{ with } 2 < \gamma < 3 \end{cases}$

Nonsymmetric avalanche shape functions occur when the offspring distribution has a power-law tail: $q_k \sim k^{-\gamma}$ with $2 < \gamma < 3$
Asymptotics for average avalanche shape functions

$$A(t) = Q(T-t)\frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

Large-*T* asymptotics for critical case ($\xi = 1$):

 $A(t) \sim \begin{cases} \frac{t}{T} \left(1 - \frac{t}{T}\right) & \text{if } q_k \text{ has finite second moment} \\ \frac{t}{T} \left(1 - \frac{t}{T}\right)^{\overline{\gamma - 2}} & \text{if } q_k \sim k^{-\gamma} \text{ with } 2 < \gamma < 3 \end{cases}$

Asymptotics for average avalanche shape functions

$$A(t) = Q(T-t)\frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

Large-*T* asymptotics for critical case ($\xi = 1$):

 $A(t) \sim \begin{cases} \frac{t}{T} \left(1 - \frac{t}{T}\right) & \text{if } q_k \text{ has finite second moment} \\ \frac{t}{T} \left(1 - \frac{t}{T}\right)^{\overline{\gamma - 2}} & \text{if } q_k \sim k^{-\gamma} \text{ with } 2 < \gamma < 3 \end{cases}$

Asymptotics for average avalanche shape functions

$$A(t) = Q(T-t)\frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

Large-*T* asymptotics for critical case ($\xi = 1$):

 $A(t) \sim \begin{cases} \frac{t}{T} \left(1 - \frac{t}{T}\right) & \text{if } q_k \text{ has finite second moment} \\ \frac{t}{T} \left(1 - \frac{t}{T}\right)^{\overline{\gamma - 2}} & \text{if } q_k \sim k^{-\gamma} \text{ with } 2 < \gamma < 3 \end{cases}$

Derivation of the average non-terminating avalanche shape

Continuous-time Markov branching processes ۲

$$P_{1j}(t) = P\{Z(\tau + t) = j \mid Z(\tau) = 1\}$$

$$F(s,t) = \sum_{k} P_{1k}(t) s^{k}$$

Probability of extinction by time *t*: ۲

$$Q(t) = P\{Z(t) = 0 \mid Z(0) = 1\} = F(0, t)$$

Avalanche path probability: ۰

$$\pi_n(t) = P\{Z(t) = n \mid Z(0) = 1 \text{ and } Z(T) > 0\}$$

$$\pi_n(t) = \frac{P_{1n}(t)[1 - P_{10}(T - t)^n]}{\sum_m P_{1m}(t)[1 - P_{10}(T - t)^m]}$$

Average non-terminating avalanche shape:

$$\pi_n(t) \propto P_{1n}(t) [1 - P_{n0}(T - t)]$$
$$P_{n0}(T - t) = [P_{10}(T - t)]^n$$
$$\frac{\partial}{\partial t} F(s, t) = [f(s) - s]F'(s, t)$$

∂t

$$\frac{\partial}{\partial t}F(s,t) = f(F(s,t)) - F(s,t)$$

Derivation of the average non-terminating avalanche shape

Continuous-time Markov branching processes

$$P_{1j}(t) = P\{Z(\tau + t) = j \mid Z(\tau) = 1\}$$

$$F(s,t) = \sum_{k} P_{1k}(t) s^{k}$$

• Probability of extinction by time *t*:

$$Q(t) = P\{Z(t) = 0 \mid Z(0) = 1\} = F(0, t)$$

• Avalanche path probability:

 $A_{NT}(t) = \sum n \pi_n(t) =$

$$\pi_n(t) = P\{Z(t) = n \mid Z(0) = 1 \text{ and } Z(T) > 0\}$$

 $\frac{e^{(f'(1)-1)t} - Q(T-t)\frac{f}{f(Q(t))}}{1 - Q(T-t)\frac{f}{f(Q(t))}}$

$$\pi_n(t) = \frac{P_{1n}(t)[1 - P_{10}(T - t)^n]}{\sum_m P_{1m}(t)[1 - P_{10}(T - t)^m]}$$

• Average non-terminating avalanche shape:

$$A_{NT}(t) = \frac{e^{(\xi-1)t} - Q(T-t)\frac{f(Q(T)) - Q(T)}{f(Q(T-t)) - Q(T-t)}}{1 - Q(T)}$$

 q_k Poisson, $\xi = 1$ (critical)

t/T

Asymptotics for average non-terminating avalanche shape

$$A_{NT}(t) = \frac{e^{(\xi-1)t} - Q(T-t)\frac{f(Q(T)) - Q(T)}{f(Q(T-t)) - Q(T-t)}}{1 - Q(T)}$$

Large-*T* asymptotics for critical case ($\xi = 1$):

Overview

- 1. Average avalanche shape functions (and beyond...)
- 2. Analytical results
- 3. Numerical simulations

Cascade models: examples

• Threshold model (undirected network)

• Neuronal dynamics model of Friedman et al. (directed network)

The weight ϕ_{ij} of each directed edge from neuron *i* to neuron *j* is assigned randomly from a uniform distribution on $[0, \phi_{max}]$. When neuron *i* fires (becomes active), it causes neuron *j* to become active (in the next discrete time step) with probability ϕ_{ij} . After a neuron fires, it returns to the inactive state in the next time step.

Meme diffusion model (directed network)

Numerical simulation: threshold model ($\xi = 1$)

0.4

t/T

0.6

0.8

Number of nodes: $N = 10^5$; number of avalanches: $n_A = 10^6$

0.2

random z-regular network, z = 3

0.0

Numerical simulation: threshold model ($\xi = 1$)

• scale-free network, $p_k \sim k^{-\alpha}$ with $\alpha = 3.3$

Numerical simulation: neuronal dynamics model ($\xi = 1$)

• $p_{jk} = p_j p_k$ with p_j Poisson, p_k z-regular, z = 10

Numerical simulation: neuronal dynamics model ($\xi = 1$)

•
$$p_{jk} = p_j p_k$$
 with p_j Poisson, $p_k \sim k^{-\alpha}$, $\alpha = 2.5$

Number of nodes: $N = 10^5$; number of avalanches: $n_A = 10^7$

Numerical simulation: Twitter model ($\xi = 1$)

Numerical simulation: Twitter model ($\xi = 1$)

• $p_{jk} = p_j p_k$ with p_j Poisson, $p_k \sim k^{-\alpha}$, $\alpha = 2.5$

Average non-terminating avalanche shapes: Twitter model

• $p_{jk} = p_j p_k$ with p_j Poisson, $p_k z$ -regular, z = 10

Average non-terminating avalanche shapes: Twitter model

t/T

• $p_{jk} = p_j p_k$ with p_j Poisson, $p_k \sim k^{-\alpha}$, $\alpha = 2.5$

Twitter model on real Twitter network ($\xi = 1$)

 SNAP Twitter social circles network http://snap.stanford.edu/data/egonets-Twitter.html

Twitter model on real Twitter network ($\xi = 1$)

• SNAP Twitter social circles network http://snap.stanford.edu/data/egonets-Twitter.html

Number of nodes: N = 81,306; number of avalanches: $n_A = 1.4 \times 10^6$

Overview

- 1. Average avalanche shape functions (and beyond...)
- 2. Analytical results
- 3. Numerical simulations

Competition-induced criticality in a model of meme diffusion

Competition-induced criticality in a model of meme diffusion

"active edges" ("exposed" nodes) in cascades play the role of particles in branching processes

Competition-induced criticality in a model of meme diffusion

"active edges" ("exposed" nodes) in cascades play the role of particles in branching processes

$$\frac{dQ}{dt} = f(Q) - Q, \quad Q(0) = 0$$

$$A(t) = Q(T-t)\frac{f'(Q(T)) - f'(Q(T-t))}{f(Q(T-t)) - Q(T-t)}$$

Numerical simulation: threshold model ($\xi = 1$)

• scale-free network, $p_k \sim k^{-\alpha}$ with $\alpha = 3.3$

Numerical simulation: threshold model ($\xi = 1$)

Conclusions

• Average avalanche shapes can be predicted from the network structure and the dynamics, via q_k

$$q_k = \frac{k+1}{z} p_{k+1} v_{k+1}$$
 $q_k = \sum_j \frac{j}{z} p_{jk} v_{jk}$

- Nonsymmetric avalanche shape functions occur when the offspring distribution has a power-law tail: $q_k \sim k^{-\gamma}$ with $2 < \gamma < 3$
- Other scaling functions (e.g. non-terminating avalanche shapes) can be defined
- Depending on the dynamics, nonsymmetric avalanche shapes can occur on scale-free networks with various power-law exponents $p_k \sim k^{-\alpha}$ (i.e., γ may not be equal to α)

The theoretical tools developed here should be useful for analysing the criticality (or otherwise) of a range of cascading dynamics on networks

Temporal profiles of avalanches on networks

James P. Gleeson MACSI, Department of Mathematics and Statistics, University of Limerick

Rick Durrett

Department of Mathematics, Duke University

www.ul.ie/gleeson

UNIVERSITY of LIMERICK

OLLSCOIL LUIMNIGH

@gleesonj

james.gleeson@ul.ie

Extra slides (Supplementary material of arXiv: 1612.06477)

Comparing discrete-time and continuous-time results

Non-Markovian meme diffusion model

• Weibull inter-event time distribution

 $f(\tau) = \frac{k}{\lambda} \left(\frac{\tau}{\lambda}\right)^{k-1} e^{-(\tau/\lambda)^k}$

Non-Markovian meme diffusion model

Non-Markovian meme diffusion model

