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Contact process

The model: contact process

Consider N nodes that can either be infected or healthy. An
infected node i heals (becomes healthy) with rate δi ≥ 0.

Furthermore, if i is infected, it infects a node j with rate Aij ; this
means that if i is infected and j is healthy, j can become infected
at rate Aij ≥ 0.

If I ⊂ {1, . . . ,N} represents the infected nodes (I is the ”state” of
the process), then

I → I ∪ {j} at rate
∑

i∈I Aij

I → I \ {i} at rate δi .



Mean Field Approximation

Mean flow

If we consider a state X (t) ∈ {0, 1}N at some time t, we can
calculate the expected jump in a small time period h:

E(Xi (t+h)−Xi (t) | X (t)) = −Xi (t)δih+(1−Xi (t))
n∑

j=1

AjiXj(t)h.

Stability

If we have meta-stability, we should find that

0 =
n∑

j=1

(Aji − δi )E(Xi )−
n∑

j=1

AjiE(XiXj).

In MFA we approximate E(XiXj) = E(Xi )E(Xj).



Mean Field Approximation

Example Simulated network

N = 9994 nodes, heavy tailed degree-distribution.
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Mean Field Approximation

Example Simulated network

N = 9994 nodes, heavy tailed degree-distribution.
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Mean Field Approximation

Example

N = 9994 nodes, heavy tailed degree-distribution.
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Mean Field Approximation

Example

Simulation of about 6.5 · 106 events. Average occupation given.
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Mean Field Approximation

Shortcomings of MFA

Fluctuations?

Correlations?

No possibility to improve approximation (at the cost of extra
computations).

Idea: approximate A by structured matrix

We suggest to approximate A by writing

A ≈W TH,

with W and H k × N-dimensional non-negative matrices. This is
known as Non-negative Matrix Factorization (NMF).



Non-negative Matrix Factorization

Equilibrium

When A ≈W TH and healing rates are given by ∆, apply MFA:

∆iE(X )i = (WE(X ))THi − (WE(X ))THiE(X )i .

Define C̃ = WE(X ) ∈ Rk . We get

E(X )i =
C̃THi

∆i + C̃THi

and C̃ =
N∑
i=1

(C̃THi )Wi

∆i + C̃THi

.

How does this compare to original MFA?



Non-negative Matrix Factorization

Compare MFA for simulated network
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Non-negative Matrix Factorization

Feature space

When A = W TH, and the healing rates are given by the vector ∆,
each node has a 2k + 1 dimensional feature:

Zi = (Wi ,Hi ,∆i ).

We say that Wi is the infectiousness, Hi is the susceptibility and
∆i the healing rate. Node i infects node j with rate W T

i Hj .

Now we could define clusters on the basis of these features: two
nodes are almost indistinguishable if they have almost the same
features.



Factorized infection matrix

Indistinguishability

When A = W TH, a set of nodes G ⊂ {1, . . . ,N} is
indistinguishable, precisely when ∀i , j ∈ G : Zi = Zj .
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The process (N1(t), . . . ,Nr(t))

Clustering the nodes

We form r clusters of nodes that have Z -values close together:
B1, . . . ,Br is a partition of {1, . . . ,N}. Define

Nj = Nj(t) = #{i ∈ Bj | Xi (t) = 1}.

Set mj = #Bj . Define Yj as the mean of the Z -values in cluster j :

Yj =
1

mj

∑
i∈Bj

Zi .

In reasonable approximation, the vector (N1, . . . ,Nr ) is now a
Markov process, with transition rates determined by Y1, . . . ,Yr .



The process (N1(t), . . . ,Nr(t))

Transition rates

Write Yj = (Yw ,j ,Yh,j ,Yδ,j). The rates are given by:

Nj → Nj + 1 at rate (mj − Nj)
r∑

k=1

NkY
T
w ,kYh,j

Nj → Nj − 1 at rate Yδ,jNj .

Equilibrium: Yδ,jNj = (mj − Nj)
(∑r

k=1NkY
T
w ,k

)
Yh,j .

Define C =
∑r

k=1NkYw ,k ∈ Rk . We get

Nj =
CTYh,j

Yδ,j + CTYh,j
·mj and C =

r∑
j=1

mj(C
TYh,j)Yw ,j

Yδ,j + CTYh,j
.



The process (N1(t), . . . ,Nr(t))

Equilibrium

Nj =
CTYh,j

Yδ,j + CTYh,j
·mj and C =

r∑
j=1

mj(C
TYh,j)Yw ,j

Yδ,j + CTYh,j
.

Compare this to MFA when A = W TH:

E(X )i =
C̃THi

∆i + C̃THi

and C̃ =
N∑
i=1

(C̃THi )Wi

∆i + C̃THi

.

This shows that with properly chosen clusters, N∞j ≈
∑

i∈Bj
E(X )i .



The process (N1, . . . ,Nr)

Fluctuations

Nj → Nj + 1 at rate (mj − Nj)
r∑

k=1

Y T
h,jYw ,kNk

Nj → Nj − 1 at rate Yδ,jNj .

Define the fluctuations away from equilibrium:

Dj = Nj − N∞j .

Infections: Ij ∼ Pois

(
h(mj − N∞j − Dj)

r∑
k=1

Y T
h,jYw ,k(N∞k + Dk)

)
.

Healings: Hj ∼ Pois
(
hYδ,j(N

∞
j + Dj)

)
.



The process (N1, . . . ,Nr)

Normal approximation

{Ij} and {Hj} are all independent. When clusters are large enough,
Poisson variables are well approximated by normal random
variables. Define ∆Dj = Ij − Hj . Up to main order, we get:

E(∆Dj) ≈ h(mj − N∞j )
r∑

k=1

Y T
h,jYw ,kDk − hDj

r∑
k=1

Y T
h,jYw ,kN

∞
k

− hYδ,jDj

Var(∆Dj) ≈ 2hYδ,jN
∞
j .

Define B(t) to be an r -dimensional Brownian motion. We get

dD(t) = KD(t)dt + diag(
√

2diag(N∞)Yδ)dB(t),

K = diag(m − N∞)Y T
h Yw − diag(Y T

h YwN
∞ + Yδ).



The process (N1, . . . ,Nr)

Explicit solution

Define Σ0 = diag(2diag(N∞)Yδ). Then

D(t) = eKtD(0) +

∫ t

0
eK(t−s)Σ

1/2
0 dB(s).

Since K only has negative eigenvalues when MFA solution exists,
there exists a stationary solution. Covariance matrix Σ is given by:

Σ =

∫ ∞
0

eKsΣ0e
KT s ds.

This also solves the matrix equation

KΣ + ΣKT = −Σ0.



The process (N1, . . . ,Nr)

Explicit solution

KΣ + ΣKT = −Σ0.

This matrix equation has an explicit solution if K is diagonalizable:

K = VΛV−1.

We get ΛV−1ΣV−T + V−1ΣV−TΛ = −V−1Σ0V
−T , so

(Λii + Λjj)(V−1ΣV−T )ij = −(V−1Σ0V
−T )ij .

Define J to be the all ones matrix, and we see that

Σ = −V V−1Σ0V
−T

ΛJ + JΛ
V T .



The process (N1, . . . ,Nr)

Conlusion

We found that the vector-values proces N(t) has an approximating
stationary distribution, given by

N(t) ∼ Nr (N∞,Σ).

We have also linked the time-evolution to the eigenvalues of the
matrix K . We used a string of approximations:

First approximate A by W TH.

Choose r clusters, and use average infectiousness, susceptibilty
and healing rate for all nodes within a cluster. This way,
N(t) = (N1(t), . . . ,Nr (t)) becomes a Markov process.

Approximate N(t) by a non-linear SDE.

Only consider highest order terms, and solve linear SDE.



Example: simulated network

Total number infected

Total number of infected: N (
∑r

j=1N
∞
j ,
∑r

j=1

∑r
j ′=1 Σjj ′).
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Example: simulated network

Simulated and predicted variance of the clusters.
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Example: airport network

Airport network

Matrix A is asymmetric and infections rates vary; 3425 nodes. We
try 1 dimensional factorisation, with 3425 clusters.
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Example: airport network

Airport network

Now no factorisation (W = I ,H = A), with 3425 clusters. We also
correct MFA.
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Correct the mean of MFA

Use covariance prediction

Rate equation for expectations:

dE(Nj)

dt
=

r∑
k=1

Y T
h,jYw ,kE(Nk(mj − Nj))− Yδ,jE(Nj)

=
r∑

k=1

mjY
T
h,jYw ,kE(Nk)− Yδ,jE(Nj)−

r∑
k=1

Y T
h,jYw ,kE(NkNj)

=
r∑

k=1

mjY
T
h,jYw ,kE(Nk)− Yδ,jE(Nj)

−
r∑

k=1

Y T
h,jYw ,kE(Nk)E(Nj)−

r∑
k=1

Y T
h,jYw ,kCov(Nk ,Nj)



Correct the mean of MFA

Use covariance prediction

Use the estimate for the covariance (Cov(Nk ,Nj) = Σkj) and put
derivative to 0:

diag(Y T
h YwΣ) ≈ diag(m)Y T

h YwE(N)− diag(Yδ)E(N)

− diag(E(N))Y T
h YwE(N).

This gives a corrected estimate for the expected infection of each
cluster. This new value may be (slightly) negative, in which case
we put it to 0.

Not always effective

We found that this correction is small when using low dimensions
or few clusters.



Example: airport network

Airport network

Corrected MFA for each node.
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Work in progress

Limit theorems?

If we know that the features of all the nodes have a reasonable
distribution, can we prove that the contact process converges
to a normal process, as the number of nodes increases?

As we increase the dimension of the feature space, will the
approximation to the true contact process get better? Under
what conditions?

Non-negative Matrix Factorization

What should we optimise when trying to determine W and
H? For example, the diagonal is irrelevant for us.

If A and W TH are close, what does this mean for the contact
process? Can we control the difference in meta-stable
distribution?


