Topological-Temporal Properties of Evolving Networks

Alberto Ceria, Shlomo Havlin, Alan Hanjalic, and Huijuan Wang

Overview

- Introduction & Motivation
- Definitions & Results
- Conclusions

h 18:00

Evolving networks?

h 18:30

Evolving networks?

h 19:00

Evolving networks?

- **Comparing** different networks
- evolving networks
- Guiding the development of improved evolving network models

• Detecting properties that can influence dynamic processes unfolding on

Lorenzo Isella, Juliette Stehlé, Alain Barrat, Ciro Cattuto, Jean-François Pinton, and Wouter Van den Broeck. What's in a crowd? analysis of face-to-face behavioral networks. Journal of theoretical biology, 271(1):166–180, 2011. Marton Karsai, Kimmo Kaski, Albert-László Barabási, and János Kertéusz. Universal features of correlated bursty behaviour. Scientific Reports, 2:397, 2012.

Lorenzo Isella, Juliette Stehlé, Alain Barrat, Ciro Cattuto, Jean-François Pinton, and Wouter Van den Broeck. What's in a crowd? analysis of face-to-face behavioral networks. Journal of theoretical biology, 271(1):166–180, 2011. Marton Karsai, Kimmo Kaski, Albert-László Barabási, and János Kertéusz. Universal features of correlated bursty behaviour. Scientific Reports, 2:397, 2012.

 Characterization of properties of (weighted) time-aggregated topology

Lorenzo Isella, Juliette Stehlé, Alain Barrat, Ciro Cattuto, Jean-François Pinton, and Wouter Van den Broeck. What's in a crowd? analysis of face-to-face behavioral networks. Journal of theoretical biology, 271(1):166–180, 2011. Marton Karsai, Kimmo Kaski, Albert-László Barabási, and János Kertéusz. Universal features of correlated bursty behaviour. Scientific Reports, 2:397, 2012.

 Characterization of properties of (weighted) time-aggregated topology

Lorenzo Isella, Juliette Stehlé, Alain Barrat, Ciro Cattuto, Jean-François Pinton, and Wouter Van den Broeck. What's in a crowd? analysis of face-to-face behavioral networks. Journal of theoretical biology, 271(1):166–180, 2011. Marton Karsai, Kimmo Kaski, Albert-László Barabási, and János Kertéusz. Universal features of correlated bursty behaviour. Scientific Reports, 2:397, 2012.

 Characterization of properties of (weighted) time-aggregated topology (ignores time!!)

Lorenzo Isella, Juliette Stehlé, Alain Barrat, Ciro Cattuto, Jean-François Pinton, and Wouter Van den Broeck. What's in a crowd? analysis of face-to-face behavioral networks. Journal of theoretical biology, 271(1):166-180, 2011. Marton Karsai, Kimmo Kaski, Albert-László Barabási, and János Kertéusz. Universal features of correlated bursty behaviour. Scientific Reports, 2:397, 2012.

- Characterization of properties of (weighted) time-aggregated topology (ignores time!!)
- Characterization of temporal properties of the time series of activations of a single link (or node)

Lorenzo Isella, Juliette Stehlé, Alain Barrat, Ciro Cattuto, Jean-François Pinton, and Wouter Van den Broeck. What's in a crowd? analysis of face-to-face behavioral networks. Journal of theoretical biology, 271(1):166-180, 2011. Marton Karsai, Kimmo Kaski, Albert-László Barabási, and János Kertéusz. Universal features of correlated bursty behaviour. Scientific Reports, 2:397, 2012.

- Characterization of properties of (weighted) time-aggregated topology (ignores time!!)
- Characterization of temporal properties of the time series of activations of a single link (or node)

Lorenzo Isella, Juliette Stehlé, Alain Barrat, Ciro Cattuto, Jean-François Pinton, and Wouter Van den Broeck. What's in a crowd? analysis of face-to-face behavioral networks. Journal of theoretical biology, 271(1):166-180, 2011. Marton Karsai, Kimmo Kaski, Albert-László Barabási, and János Kertéusz. Universal features of correlated bursty behaviour. Scientific Reports, 2:397, 2012.

- Characterization of properties of (weighted) time-aggregated topology (ignores time!!)
- Characterization of temporal properties of the time series of activations of a single link (or node) (ignores topology!!)

Systematic methods to characterize simultaneously the temporal and topological relations of contacts/events are still missing.

Lorenzo Isella, Juliette Stehlé, Alain Barrat, Ciro Cattuto, Jean-François Pinton, and Wouter Van den Broeck. What's in a crowd? analysis of face-to-face behavioral networks. Journal of theoretical biology, 271(1):166–180, 2011. Marton Karsai, Kimmo Kaski, Albert-László Barabási, and János Kertéusz. Universal features of correlated bursty behaviour. Scientific Reports, 2:397, 2012.

- Characterization of properties of (weighted) time-aggregated topology (ignores time!!)
- Characterization of temporal properties of the time series of activations of a single link (or node) (ignores topology!!)

Do contacts close in time occur close in topology too?

Systematic characterization of contacts

Systematic characterization of contacts

Interrelation of topological and temporal distance of contacts

Systematic characterization of contacts

- Interrelation of topological and temporal distance of contacts
- Local analysis of temporal correlation around a link

Contacts of which evolving networks?

Network	N	$ \mathcal{L}_W $	$ \mathcal{S} $	$ \mathcal{C} $	T	dt	contact type
DNC Mail Part 2 (DNC_2*)	1598	4085	17300	30091	2861358	1	virtual
Manufacturing Email (ME*)	167	3250	57791	82281	23430482	1	virtual
College Messages (CM*)	1892	13833	58905	59789	16362751	1	virtual
Email EU (EEU*)	986	16025	206311	324933	44719809	1	virtual
Infectious (Infectious)	410	2765	1392	17298	1421	20	physical
Primary School (PS)	242	8317	3099	125771	3098	20	physical
High School 2012 (HS2012)	180	2220	11267	45047	14114	20	physical
High School 2013 (HS2013)	327	5818	7371	188504	7370	20	physical
Hypertext 2009 (HT2009)	113	2196	5243	20818	7226	20	physical
SFHH Conference (SFHH)	403	9565	3508	70261	3799	20	physical
Workplace 2013 (WP)	92	755	7095	9827	17844	20	physical
Workplace 2015 (WP2)	217	4274	18479	78246	20946	20	physical
Hospital (Hospital)	75	1139	9452	32424	16026	20	physical

G

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." *arXiv preprint arXiv:1806.04032* (2018).

- t
- +
- 0
- t
- t
- t

9

G

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).

G

Link	${\cal G}$	\mathcal{G}^1
e(i,j)	1	5
e(i,m)	2	4
e(i,l)	2	3
e(i,m)	3	1
e(j,k)	4	2
e(i,j)	5	2

G

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).

Link	${\cal G}$	\mathcal{G}^1
e(i,j)	1	5
e(i,m)	2	4
e(i,l)	2	3
e(i,m)	3	1
e(j,k)	4	2
e(i,j)	5	2

G

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).

 \mathcal{G}^1

Link	${\cal G}$	\mathcal{G}^1
e(i,j)	1	5
e(i,m)	2	4
e(i,l)	2	3
e(i,m)	3	1
e(j,k)	4	2
e(i,j)	5	2

G

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).

 \mathcal{G}^1

Link	${\cal G}$	\mathcal{G}^1
e(i,j)	1	5
e(i,m)	2	4
e(i,l)	2	3
e(i,m)	3	1
e(j,k)	4	2
e(i,j)	5	2

t

G

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).

 \mathcal{G}^1

Link	${\cal G}$	\mathcal{G}^1
e(i,j)	1	5
e(i,m)	2	4
e(i,l)	2	3
e(i,m)	3	1
e(j,k)	4	2
e(i,j)	5	2

swap time series of links

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).

 \mathcal{G}^1

Link	${\cal G}$	\mathcal{G}^1
e(i,j)	1	5
e(i,m)	2	4
e(i,l)	2	3
e(i,m)	3	1
e(j,k)	4	2
e(i,j)	5	2

reshuffle timestamps

t

t

swap time series of links

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).

 \mathcal{G}^1

Link	${\cal G}$	\mathcal{G}^1
e(i,j)	1	5
e(i,m)	2	4
e(i,l)	2	3
e(i,m)	3	1
e(j,k)	4	2
e(i,j)	5	2

reshuffle timestamps

t

swap time series of links

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).

 \mathcal{G}^1

Link	${\cal G}$	\mathcal{G}^1
e(i,j)	1	5
e(i,m)	2	4
e(i,l)	2	3
e(i,m)	3	1
e(j,k)	4	2
e(i,j)	5	2

reshuffle timestamps

t

t

swap time series of links

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).

 \mathcal{G}^1

Link	${\cal G}$	\mathcal{G}^1
e(i,j)	1	5
e(i,m)	2	4
e(i,l)	2	3
e(i,m)	3	1
e(j,k)	4	2
e(i,j)	5	2

swap time series of links

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).

 \mathcal{G}^1

Link	${\cal G}$	\mathcal{G}^1
e(i,j)	1	5
e(i,m)	2	4
e(i,l)	2	3
e(i,m)	3	1
e(j,k)	4	2
e(i,j)	5	2

 \mathcal{G}^{I}

swap time series of links

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." *arXiv preprint arXiv:1806.04032* (2018).

2

2

e(i,j)

e(i,m)

e(i,l)

swap time series of links with same number of activations

5

4

3

9

timestamps

reshuffle

swap time series of links

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).

swap time series of links with same number of activations

9

 \mathcal{G}^{1}

swap time series of links

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." *arXiv preprint arXiv:1806.04032* (2018).

e(i,j)

e(i,m)

e(i,l)

e(i,m)

2

2

3

5

4

3

1

9

timestamps

reshuffle

swap time series of links

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).

with same number of activations

swap time series of links

Gauvin, Laetitia, et al. "Randomized reference models for temporal networks." arXiv preprint arXiv:1806.04032 (2018).

with same number of activations

Topological and temporal distance of contacts

• **Topological** distance of two contacts:

$$\eta(\ell(i,j,t),\ell(k,l,s)) = \begin{cases} \min_{u \in \{i\}} \\ 0 \end{cases}$$

 $\{i,j\}, v \in \{k,l\}\} (h(u,v)+1) \quad e(i,j) \neq e(k,l)$ e(i,j) = e(k,l)
• **Topological** distance of two contacts:

$$\eta(\ell(i,j,t),\ell(k,l,s)) = \begin{cases} \min_{u \in \{i\}} 0 \\ 0 \end{cases}$$

 $\{i,j\}, v \in \{k,l\}\} (h(u,v) + 1) \quad e(i,j) \neq e(k,l)$ e(i,j) = e(k,l)

• **Topological** distance of two contacts:

$$\eta(\ell(i,j,t),\ell(k,l,s)) = \begin{cases} \min_{u \in \{i\}} 0 \\ 0 \end{cases}$$

 $\{i,j\}, v \in \{k,l\}\} (h(u,v)+1) | e(i,j) \neq e(k,l)$ e(i,j) = e(k,l)

• **Topological** distance of two contacts:

$$\eta(\ell(i,j,t),\ell(k,l,s)) = \begin{cases} \min_{u \in \{i\}} 0 \\ 0 \end{cases}$$

 $[i,j], v \in \{k,l\}\} (h(u,v) + 1) | e(i,j) \neq e(k,l)$ e(i,j) = e(k,l)

• **Topological** distance of two contacts:

$$\eta(\ell(i,j,t),\ell(k,l,s)) = \begin{cases} \min_{u \in \{i\}} 0 \\ 0 \end{cases}$$

 $[i,j], v \in \{k,l\}\}$ (h(u,v) + 1) $e(i,j) \neq e(k,l)$ e(i,j) = e(k,l)

• **Topological** distance of two contacts:

$$\eta(\ell(i,j,t),\ell(k,l,s)) = \begin{cases} \min_{u \in \{i,j\}, v \in \{k,l\}\}} (h(u,v)+1) & e(i,j) \neq e(k,l) \\ 0 & e(i,j) = e(k,l) \end{cases}$$

• **Temporal** distance of two contacts:

$$\mathcal{T}(\ell(i,j,t),\ell(k,l,s))$$

)) = |t - s|

h 18:00

h 18:30

h 19:00

Example

11

Topological distance: $\eta(\ell_1, \ell_2) = 3$

Topological distance: $\eta(\ell_1, \ell_2) = 3$

Example

Temporal distance: $\mathcal{T}(\ell_1, \ell_2) = 1h$

cannot explain these trends, especially in virtual contacts and Infectious!

Local analysis of temporal correlation around a link

Local analysis around a link = Link egonetwork

Marton Karsai, Kimmo Kaski, Albert-László Barabási, and János Kertész. Universal features of correlated bursty behaviour. Scientific Reports, 2:397, 2012.

Local analysis of temporal correlation around a link

Local analysis around a link = Link egonetwork

Temporal correlation of egonetwork activity

Train size distribution of egonetwork activity

Marton Karsai, Kimmo Kaski, Albert-László Barabási, and János Kertész. Universal features of correlated bursty behaviour. Scientific Reports, 2:397, 2012.

Train size distribution with $\Delta t = 60s$

Train size distribution with $\Delta t = 60s$

10³

10³

Train size distribution with $\Delta t = 60s$

temporal correlation among neighbouring links = higher chance of long trains

Number of active links during a train

Number of active links during a train

Number of active links during a train

In physical contacts, the number of active links during a train is influenced by the social context!

Take home messages

- Contacts close in time tend to happen also close in topology
- Temporal correlation among neighbouring links is particularly evident in virtual contacts and Infectious datasets
- The number of active links during a train reflects different social contexts

Prof. Shlomo Havlin

Thank you!

Prof. Alan Hanjalic

Prof. Huijuan Wang

Dank je wel!

JOURNAL ARTICLE **Topological**-temporal properties of evolving networks Get access >

Alberto Ceria 🖾, Shlomo Havlin, Alan Hanjalic, Huijuan Wang

https://doi.org/10.1093/comnet/cnac041

Published: 24 August 2022 Article history -

Published

Accepted Manuscript

- Journal of Complex Networks, Volume 10, Issue 5, October 2022, cnac041,

CONTACT: a.ceria@tudelft.nl