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Abstract
We show that, at the time being, the probability Pr[M (¢) = k] that the number of infected
nodes M (t) at time ¢ equals k in the Markovian continuous-time e-SIS process on the complete

graph cannot be determined exactly.

1 Introduction

In spite of the simplicity of the Markovian continuous-time SIS model, there does not seem to exist
an exact time-dependent solution for any graph. Most analytic results are known for the complete
graph as shown in [12, Sec. 17.6]. Before elaborating on the exact analytic solution of the Markovian
continuous-time SIS model on the complete graph Ky containing N nodes, we briefly review the
classical mean-field approximation.

For the complete graph K, mean-field approximations are accurate [3, 16]. Very likely — although
there does not seem to be a rigorous proof — among all graphs, mean-field approximations are the most
accurate in the complete graph. In the N-intertwined mean-field approximation (NIMFA) [15, 11],
the governing equation for the probability v (¢) of infection in a node at time ¢ in a regular graph G

with degree r equals
L8 rg@v - ) -6 (1)

where the infection rate 5 (¢) and the curing rate § (¢) are general non-negative real functions of time

t. The probability v (t) at time ¢ changes due to two possible actions: (a) if the node is healthy with
probability 1 —w (¢), its r infected neighbors — each neighbor is infected with the same probability v (t)
(due to symmetry) — can infect the node with instantaneous rate 3 (¢); (b) when the node is infected,
which happens with probability v (¢), a curing processes with instantaneous rate § (¢) can heal the node.
Since the rates are time-varying, the infection and curing process are independent, inhomogeneous

Poisson processes [12]. The differential equation (1) can be solved exactly [13], resulting in
" exp (fy (r (w) = 6 (w)) du)
v(t) = .
% + rfgﬁ (s)exp (fo (rB(u) — 90 (u)) du) ds
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where vg is the initial fraction of infected nodes.

As shown in [6] for regular graphs, the governing differential equations are precisely the same for
NIMFA and the heterogeneous mean-field (HMF) approximation [8] of Pastor-Satorras and Vespignani.
Hence, the equation (1) constitutes a general SIS mean-field approximation for regular graphs. An
interesting feature of (1) is its independence on the size of the network, which avoids (or ignores)
finite-size effects that often complicate studies of phase transitions. For regular graphs, the NIMFA
average fraction of infected nodes y (t) = v (¢) and y (t) is coined the order parameter in statistical
physics. Equation (1) with constant rates, 5 (t) = § and § (¢) = 0, has been investigated earlier by
Kephart and White [5]. Many variations on and extensions of the epidemic Kephart and White model
have been proposed (see e.g. [9, 15, 7]). In fact, the differential equation (1) with constant rates has
already appeared in earlier work before Kephart and White (see e.g. [2, 4]) and is also known as the

logistic differential equation of population growth, first introduced by Verhulst [17] in 1845.

2 The number of infected nodes in Ky

We consider the time-dependent e-SIS process on the complete graph, where a positive self-infection
rate ¢ is crucial for the existence of a non-trivial steady state as shown in [12, Chapter 17]. The
number of infected nodes M (t) at time ¢ in the complete graph K is described by a continuous-time

Markov process on {0, 1,..., N} with the following rates:

M — M +1 at rate (BM +¢) (N — M)
M — M — 1 at rate 0 M.

Every infected node heals with rate d, which explains the transition rate M +— M — 1. Every healthy
node (of which there are N—M at state M) has exactly M infected neighbors, each actively transferring
the virus with rate § in addition to the self-infection rate . Alternatively, each of the M infected
nodes can infect its N — M healthy neighbors with a rate 8 and the N — M healthy nodes can infect
themselves with self-infection rate €.

This Markov process M (t) is a birth and death process with birth rate Ay, = (8k +¢) (N — k) and
death rate pp = k0 when it is in a state with M (t) = k infected nodes. The steady-state probabilities
0, ..., TN, Where mp = limy_o Pr[M (t) = k|, of a general birth-death process can be computed
exactly [12, p. 230],[14] as

N\ L T (5+E)
Wk—ﬂo(k>€ " 1@ (k> 0) (3)
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- ! (4)
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where the effective infection rate 7 = 5 and €* = 5. Thus, 7 is the steady-state probability that the

complete graph K is infection free or overall healthy. When ¢ — 0 for N fixed, we observe from (3)
that lim. g7, = 0 for £ > 0 and, consequently, that lim._ g7y = 1, which reflects that the steady
state of the SIS process (in any finite graph) is the overall-healthy state or absorbing state.



3 A generating function approach

We denote the probability that the number of infected nodes M (¢) at time ¢t equals k (or that the
e-SIS process at time ¢ is in state k) by

sk (t) = Pr[M (t) = k] (5)

By convention, we agree that si (t) = 0if K > N or if k < 0. Thus, sg (¢) is the probability that the
epidemic dies out at time t or that the complete graph K is infection free at time ¢, but only remains

infection free provided the self-infection rate € = 0. Further, the steady-state probabilities
T = lim s (1)
t—o0

are explicitly known in (3). The birth rate A\, = (Bk+¢) (N —k) = —pk* + (N3 —¢)k + Ne is
quadratic in k and the death rate u; = Ok is linear in k for any state k € {0,1,2,...,N}. The
time-dependent evolution of the constant birth and death process [12, p. 239] as well as the linear
birth and death process is described in [12, p. 243]. Here, we study the quadratic birth and death
process, whose solution has, by the best of our efforts, not yet appeared in the literature.

Applying the differential equations of a general birth and death process to e-SIS process yields the

set
so(t) = ds1(t) — Nesg (t) (6)
si(t) = {Bk®> — (NB+ 36 —¢e)k — Ne} si(t) (7)
+{=B =12+ (NG =) (k= 1) + Neb s 1(t) +8 (k+ 1) sia (8)
where all involved rates 3, and ¢ can depend upon time ¢. The first differential equation (6) is

incorporated in the general one (7) for k¥ = 0, since s_; (¢) = 0 by our convention. If £ = N, then

Ay =0 as well as sy41 (2), so that (7) reduces to
sy(t) = —0Nsy(t) +{B(N —1) +e}tsy-1(t)

Since the e-SIS epidemic must always be in one of the possible states, there holds that Zf{\;o sk (t) = 1.
Following the general method illustrated in [12, Sec. 11.3.3-11.3.4] for the constant and linear rate
birth and death process, we start by defining the probability generating function (pgf)

N
pla,t) = B [oMO] = 37 sy (t)a* 8)
k=0

which we can equally well write as p(z,t) = Y o sk(t)z", according to the convention that sy (t) = 0
if k > N orif k < 0. For any probability generating function px(z) = E [zX] = o PriX =] 2",
the radius R of convergence around z = 0 in the complex z-plane is at least equal to one, because for
2] <1, it holds that [px(2)] < 352 Pr(X =& |2/F < S50 Pr(X = k] = px(1) = 1.

Theorem 1 In the time-dependent e-SIS process on the complete graph Ky, the probability generating
function p(x,t) of the number of infected nodes M (t) at time t obeys the partial differential equation
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Proof: After multiplying both sides in (7) by z* and summing over all k£ > 0, the first line in (7)

is transformed as

N
= Z{BkQ — (NB+0—e)k— Ne} si(t)a"

With 92 = SN ksp(t)2% L and 2% = SNk (k — 1) sg (t)25 2, we have

Fr

e Ay
T = 8222 (N -1 s
1= Bx 52 (( )B+0 5)1‘8x gQ

Similarly, the transform of the second line in (7) taking our convention s_; (¢) = 0 into account is

{—5 (k—1)2+(NB—e)(k—1)+ Ns} sp_1(t)z"

i

I
1=

leading to
2,
S 2 (N - 1)5—5)#% + Nexy

Finally, the transform of the third and last line in (7) is, with sy (¢) =0,

T, = —pz*

N N+1 N 8@
=0 (k+1)s 33 =4 ksk( 2P l=9 ksp(t)zF—1 = 52
kZ_O (2 ; k(1 Z: k(1) o

Equating the three right-hand side contributions 77 + 75 + T3 and the transform of the left-hand side
n (7) yields

2
%fz—ﬁﬁ(m—l)?f—l—{( —1)5:17(1,‘—1)—E:E(:L‘—1)—5(1’-1)}%+N€($—1)@

Thus, we find the partial differential equation (9). O

The factor (x — 1) at the right-hand side of (9) is a consequence of the conservation of probability
at any time ¢, namely that ¢(1,t) = > 72 sk(t) = 1, implying that the e-SIS stochastic process is
surely in one of the possible states. Furthermore, g—‘g = Y oo ksk(t) is the average number of

infected nodes at time t. Hence, the average fraction of mfected nodes at time ¢ equals

1 dp(x,t
y(tET):NSO;x )

(10)
z=1
Initial condition. The e-SIS process can start with a certain probability distribution, which then
requires that the initial state vector s(0) = (s (0),s1(0),...,sy (0)) is given. When precisely m
nodes in Ky are infected initially at ¢ = 0, then the boundary condition ¢(z,0) = >";7, Spmax = ™.
Clearly, the value of m > 0 must exceed zero, because ¢(0,t) = so(t) is the probability that the
complete graph is infection free at time ¢ and, on the long run, lim; o, ¢(0,t) = 7 is given by (4).
Confinement. In the sequel, we limit ourselves to constant rates: mone of the infection rate j3,
self-infection rate € or curing rate § is a function of time t. In addition, we assume that the €-SIS

process starts at t = 0.



3.1 The steady-state probability generating function ¢ (z)

The steady-state probability generating function (assuming constant rates) equals with (3)

o0

o0
lim ¢(x,t) = lim Pr[M (t) = k] 2" = E Tpt® = oo ()
t—o00 t—00 o

k=0
where
Yoo(T) =m0 + __&m i <N>F <€* + k) (rx)" (11)
o 0 TF(§+1)k:1 k T
Thus, if € = 0, then mp = 1 and there holds that lim; . ¢(z,t) = Yoo(z) = 1. If € > 0, the steady-
state probability generating function ¢ () is a polynomial of degree N in x, which is more elegantly

written as
N *

@wcw__rz%)§:<z>r(i_+k)@mf (12)

k=0

and the general relation for any pgf, ¢oo(1) = 1, also follows from (4). Finally, poo(x) is a function of

three parameters
QOOO(I') = (poo($; T, e", N)
S . . L . P
The partial differential equation (9) simplifies, in the steady state for ¢ — oo and a—‘f =0, to
2 82 Poo
0x?

Introducing the integral for the Gamma function I' (s) = fooo u*~te~%du, valid for Re (s) > 0, into

(12) yields

—Bx

—i—{[(N—l),B—e]x—&}a;zo—kNegooo:O (13)

Poo () = F?%) kZ]:VO (JZ) (rz)* /OOO ye k1 g,
= {ké @) (uTx)k} du

Invoking Newton’s binomium leads to an integral representation' of the steady-state probability gen-
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erating function for € > 0,

o0
T [l
Yool(;T,", N) :g*/ uT e (14 ura)Y du (15)
T'(5) Jo
! Assuming a positive real & and letting w = (7) u, we find
Poo(T) = E*L/ e TEwT (1 +w)N dw
(rz) = T (=) Jo
We conclude that the steady-state probability generating function ¢ (x) can be written as
* * 1
poolr) = — U (=, S 41+ N, — (14)
(Tm)% T T T

where the confluent hypergeometric function [1, 13.2.8]

Ul(a,b,2) = N %a) /0 e T (1 4 w)b_a_1 dt

is one of the independent solutions of Kummer’s differential equation xdi—{ + (b—x) % —af =0 (see e.g. [1, Chapter

13]). ’



3.2 General solution of the partial differential equation (9)

Theorem 2 In the time-dependent -SIS process on the complete graph Ky with constant infection
rate B3, self-infection rate € and curing rate &, the probability generating function ¢(x,t) of the number

of infected nodes M (t) at time t can be written as a Laplace transform

ol t) = /0 " eely (a0) de (16)

where the function g (x,c) obeys the differential equation

xQ(xl)ing{[(Nl)é:]$j_}(wl)ivaj_(Ns*(xl)Jrc*)g:O (17)

Proof: The usual recipe of the separation of the variables ¢t and x, by assuming that a solution in

product form as p(z,t) = g (z) h (t) exists, transforms (9) to

dlogh  (x —
o g

2
D2 g1 =) a5} 2+ Neg (18)

By taking the derivative of both sides with respect to z, we find with a%algfh = 0 that

(z—1)

2
. {_5x23xg+{[(N_1)ﬂ_€]x_5}ji+N69}:Cl (19)

where ¢; is a constant that is neither a function of  nor of ¢, because the left-hand side in (19) is
independent of ¢. Similarly, by taking the derivative of both sides in (18) with respect to ¢, we find

that
dlogh

ot

C2 (20)

and (18) shows that ¢; = co = —c.

We rewrite (19) with ¢* = & and ¢* = § to find (17).

From (20), we find h(t) = h(0) e~ for the time ¢ > 0. If ¢ were complex and Im (c) # 0, then
h(t) = h(0) e B (costIm (¢) + isintIm (¢)) and ¢(z,t) = g () h (t) is generally complex for t > 0.
However, the definition (8) of the pgf ¢(x,t) illustrates that ¢(x,t) is real for real = at any time ¢ > 0.
Hence, ¢ must be real. Moreover, since the asymptotic pgf lim;_,o p(,t) = poo(z) exists, ¢ must be

¢ = 00. We conclude that the eigenvalue c is

non-negative, otherwise lim; .o h (t) = h (0) lim;—o0 €™
real and non-negative.

The general solution of the eigenvalue differential equation in ¢ consists of a linear combina-
tion Y o€ g (x;c) if the eigenvalues ¢ are discrete. Generally, one readily verifies that ¢(z,t) =
fooo e_Ctg;(x; ¢) de satisfies the partial differential equation (9) provided that g (x;c) is a solution of the
differential equation (17) as a function of the “eigenvalue” c. O

In fact, we need to solve an eigenvalue problem that can be expanded in a Sturm-Liouville series
[10]. For ¢ = 0, the differential equation (17) reduces to the differential (13) and we conclude that

9(x,0) = poo()



The e-SIS process on the complete graph Ky with N nodes is described by a general birth-death
process by the differential equations (6) and (7). This set of linear differential equations possesses
a general (N +1) x (N +1) tri-diagonal matrix, whose eigenstructure is studied in depth in [12,
A.6.3]. The N + 1 non-negative, real eigenvalues (and one of them is zero) imply that the eigenvalues
c are a discrete set {co =0,c1,...,cn}, so that the Laplace integral in (16) will reduce to a sum
o(z,t) = Poo() + Z]kV:1 e kg (x;c) for finite size N.
The second-order differential equation (17) in the function g is of the type
dg

2 P9 N e o
% (1 :c)de—i-(ax—i—b)(l x)dm+<)\+d<1 z)g=0 (21)

where a = % —(N=1),b= %, d= N% and A = % are real numbers. Unfortunately, (21) does
not seem to be of a known type. Gauss’s hypergeometric function F (a, b; c; x) obeys the differential
equation [1, Chapter 15]

d2

x(l—m)d—ag—k[c—(a—i—b—i—l)a:]

dg

bg =
I abg =0

Slightly more general, (17) is of the type

p3 () 9@ (2) + p2 () ¢V (2) + p1 () g (x) =0

where py, (z) is a polynomial in z of degree k, where the hypergeometric differential equation is of the

form
p2 () 9? (2) + p1 () gV (x) + po (z) g (x) = 0
In conclusion, unless an analytic solution of the differential (21) can be found, we are afraid that
the probability sj () = Pr[M (¢t) = k], that the number of infected nodes M (t) at time ¢ equals k

in the Markovian continuous-time e-SIS process on the complete graph Kp, cannot be determined

exactly.

Acknowledgement. I am grateful to Johan Dubbeldam for checking the computations and for

useful discussions.

References

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover Publications, Inc., New York, 1968.

[2] N. T. J. Bailey. The Mathematical Theory of Infectious Diseases and its Applications. Charlin Griffin & Company,
London, 2nd edition, 1975.

[3] E. Cator and P. Van Mieghem. Susceptible-Infected-Susceptible epidemics on the complete graph and the star
graph: Exact analysis. Physical Review E, 87(1):012811, January 2013.

[4] D. J. Daley and J. Gani. Epidemic modelling: An Introduction. Cambridge University Press, Cambridge, U.K.,
1999.

[5] J. O. Kephart and S. R. White. Direct-graph epidemiological models of computer viruses. Proceedings of the 1991
IEEE Computer Society Symposium on Research in Security and Privacy, pages 343-359, May 1991.

[6] C. Li, R. van de Bovenkamp, and P. Van Mieghem. Susceptible-infected-susceptible model: A comparison of
N-intertwined and heterogeneous mean-field approximations. Physical Review E, 86(2):026116, August 2012.

[7] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani. Epidemic processes in complex networks.
Review of Modern Physics, 87(3):925-979, September 2015.



(8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

R. Pastor-Satorras and A. Vespignani. Epidemic dynamics and endemic states in complex networks. Physical Review
E, 63:066117, 2001.

R. Pastor-Satorras and A. Vespignani. Epidemic spreading in scale-free networks. Physical Review Letters,
86(14):3200-3203, April 2001.

E. C. Titchmarsh. Eigenfunction Expansions Associated with Second-order Differential Equations, Part I. Oxford
University Press, Amen House, London, 2nd edition, 1962.

P. Van Mieghem. The N - Intertwined SIS epidemic network model. Computing, 93(2):147-169, 2011.

P. Van Mieghem. Performance Analysis of Complex Networks and Systems. Cambridge University Press, Cambridge,
UK., 2014.

P. Van Mieghem. SIS epidemics with time-dependent rates describing ageing of information spread and mutation of
pathogens. Delft University of Technology, Report20140615 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports),
2014.

P. Van Mieghem and E. Cator. Epidemics in networks with nodal self-infections and the epidemic threshold. Physical
Review FE, 86(1):016116, July 2012.

P. Van Mieghem, J. Omic, and R. E. Kooij. Virus spread in networks. IEEE/ACM Transactions on Networking,
17(1):1-14, February 2009.
P. Van Mieghem and R. van de Bovenkamp. Accuracy criterion for the mean-field approximation in SIS epidemics

on networks. Physical Review E, 91(3):032812, March 2015.

P. F. Verhulst. Recherches mathématiques sur la loi d’accroissement de la population. Nowveaur Mémoires de
l’Académie Royale des Sciences et des Belles-Lettres de Bruxelles, XVIII:1-41, 1845.



A Reduction of the differential equation (17) to the standard form

We aim to transform (21) into the form [10]

d%y
gz TA—a@)y(w) =0 (22)
U
The standard form has many interesting properties. First, the Wronskian is constant in u. Second,
Titchmarsh [10] gives, at the beginning of the chapters, insight in the spectrum of A and he also
presents bounds to the solution y.
We make the transformation @ = h (u), so that u = h=! (z). Thus, by using the chain rule and

denoting f (u) = g (h(u)), we have
dg(z) d b du _df 1 1 df

e (u))%:@% ~ W (u)du

and
P 4 (U] () de Iy W
dz? dz dx du dx de (W (u))2 du? (n' (u))3 du
We obtain
RO-Pf  (1-h) ) B (w) | df )
0 () T2 + e {(ah +b)—h ()2 } % +A+d(1—=h)f=0 (23)

Nex, we choose h such that h% (1 — h) W = 1. Thus, h2 (1 — h) = (k' (u))? or % = +hv/1 — h and
integrated

n / dh
e
hvl—h
As in Tichmarsh [10], we assume the positive sign and find
1-vV1-nh
U = log ————=
1+vV1-nh

and, inversed,

xz=h(u) = sech? (g)

Thus, z = h (u) = sech? (%) and u = 2ArcSech(+/z), which is only real and positive for z € (0,1).
After introducing h (u) = sech? (%) into (23) yields

2 hu—2
@] {m—atanh;—gsinhu}df+ (A+dtanh2g)f:0

du? sinhu du
bet hu -2 b
coshu — u )
r(u) = ~mha atanh 575 sinhu (24)
then we obtain the differential equation in f (u) = g (sech® (%)) and z = sech? (%) or u = 2ArcSech(y/z),
d* f df 2 U
W%—r(u)@—l— ()\—i-dtanh 5)]”:0

We proceed with the reduction to the standard form by considering f (u) = p(u)s(u) and the

above differential equation becomes

0=7p"(u) +p (u) {22/((5)) +r (u)} +p(u) {S:((;)) + 7 (u) il((g)) + ()\ + d tanh? ;L)}

9



The standard form requires that 285/((5)) +7(u) =0, or

2i log s (u) = —r (u)

du
and )
s (u) = exp (—2/7"<’U,) du)
Explicitly, we have
1 tanhu(coshﬂ)a b
s(u)=exp|—= [ r(u)du | = 2/ gqcoshu 25
w=eo (- [rua) = =EEE )

From 255/(“) +7(u)=0or Su) —2r (u), equivalent to 25’ (u) + s (u)r (u) = 0, we find that

" (u) = =55 (W) (v) - 55 (W) r' ()
which we use in () () )
8" (u s'(u) 1., ,
X = ) —I—r(u)s(u)— 4{7’ (u) +2r (u)}
Hence, with s (u) in (25) and obeying Ss/(%) = —3r (u) and with p (u) = i((Z))7 we arrive at
p'/(u)+p(u){)\+dtanh2;— {r? (u) + 20" ( )}}:0
so that
- {7‘ ) +2r' (u)} — dtanh? % (26)

We now compute ¢ (u). From the deﬁnltlon (24) of 7 (u),

1
2 (u) + 21" (u )—1—a+a(a+1)tanh2+b{bcoshu+b—2} (coshu — 1) + ——5—
4 sinh® u

+ atanhE bsinhu — 2cos‘hiu—2
2 sinh u

which is not such an insightfull expression!

Finally, we arrive with p (u) = % at the standard form

P (u) + <)\ + d tanh? g - % {7‘2 (u) + 27 (u)}> p(u)=0

Explicitly, with N’ = A+ ¢ — 2

N+ (d _a_ 9) tanh? & — 22 ginh2q — cosh?u+2 smhutanh
p/l (’U,) + < 4 4 2 16 4sinhZu 4 P (u) =0

u cosh u—2 b
+3 atzamh2 b T 3 coshu
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