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Abstract—We introduce an extension of the SIS epidemic
model that describes infection, mutation and curing for a whole
hierarchy of viruses, resembling a nested spreading process. In
our model, high level viruses are only allowed to spread to nodes
that have acquired a lower level of infection before. The simplest
case of two viruses, in which one “superinfects” the other, shows
already rich dynamics that are difficult to predict by common
mean-field approximation techniques in certain cases. We derive
an exact Markovian description for superinfection in the complete
network and the star network showing that the steady state of
the epidemic process is highly sensitive to the spreading rate of
both viruses. Taking the spreading rates into account, we outline
conditions for epidemic outbreaks, coexistence of both viruses
and extinction cycles.

I. INTRODUCTION

Epidemic spreading in networks is a process that mod-
els the propagation of information, the spread of rumors,
the contagion with diseases and similar phenomena. SIS-like
models [1], [15] are amenable to analytical understanding and
enable us to describe and study effects like endemic outbreaks
and extinction of viruses. We interpret a virus as a mere
metaphor for the entity or property that is transferred from
one node to others in the network.

Superinfection is a medically inspired term that originally
described the process of infecting an already infected indi-
vidual with a second, usually more severe virus. This can be
due to a weakness of the immune system caused by the first
virus that allows for the infection of the second virus, which
in return will dominate the first one. Hence, superinfection can
be regarded as an interaction of competing viruses, in which
the second virus is dominant, but also strongly dependent on
the (pre)-infection of the first virus.

The interactions between HIV and the Herpex Simplex
Virus type 2 (HSV-2) are a well known medical example of
superinfection: Acquisition of HSV-2 significantly increases
the chances of getting superinfected with HIV and to transmit
HIV to others [22].

Apart from the medical context, we see superinfection as an
embedded epidemic spreading process. This view is applicable
if two conditions hold: first, there needs to be a pre-condition
for the infection with the dominant virus and second, the pre-
condition itself spreads like a virus.

We believe that several applications can be better under-
stood if described as a superinfection. One example is mar-
keting: The knowledge about features (or the mere existence)
of a product is a pre-condition for people to make a buying

decision. This knowledge spreads via advertisement in social
networks, increasing brand-awareness, but not necessarily in-
ducing a buying decision for each infected individual. How-
ever, once several persons buy the actual product, first-hand
experiences start spreading via self-written reviews over social
networks as well. A possible consequence is that people pre-
disposed by advertisement will now make a buying decision
and start to actively promote the product as well.

A different use case is observed in cybersecurity, in which
a security vulnerability is the precondition to acquire a piece of
malware like a computer worm. Sometimes, even a computer
worm can be a regarded as a precondition to become infected
by another worm. For example, the Blaster computer worm [2]
was able to spread in late 2003 to over 100.000 Windows
machines, where it caused significant damage. Shortly af-
ter Blaster, another computer worm named ”Welchia” [3]
appeared. It spread by using the same system vulnerability
as Blaster, but was designed to eliminate Blaster and then
to patch the whole system. While most-likely released with
best intentions, Welchia ultimately might have caused more
damage than Blaster, which shows how easy the interactions
of computer worms are misjudged.

While Welchia was not a full success, the general idea of
active defense provides a promising alternative to traditional
countermeasures that rely on classical anti-virus software
only. Instead of deploying a resource-hungry scanner on each
machine on the network, a network operator might rather
design an antiworm as an epidemic control unit, which allows
the removal of undesired software. This worm would only
spread to infected machines and would eventually restore these
systems back to a healthy state once protection is no longer
needed.

In order to realize these applications, our work introduces
the fundamental theory of superinfection by the use of epi-
demic models. After discussing related work in Section II, we
describe the standard SIS-model and our model of superinfec-
tion in Section III. In Section IV, we show that the interaction
of 2 viruses is already so complex that standard analysis
techniques like mean-field approximation produce deviations.
In order to understand the interactions between the viruses
and their conditions for spreading and survival, we analyze the
exact Markov process for small complete networks and small
star networks in Section V in order to conclude in Section VI.

II. RELATED WORK

Nowak and May are among the first authors who focused
on modeling superinfection in their pioneering work [14].



Similar to our work, a virus hierarchy is introduced in which
stronger viruses dominate less virulent strains. In particular,
only the strongest virus is considered active, which means that
it is the only virus that spreads. In contrast to our work, mixed
populations are assumed and no underlying contact network is
taken into account.

The case where multiple viruses are active is known as
coinfection and was also explored and modeled by Nowak and
May [9]. Mosquera et al. [11] show that superinfection can be
a limit case for a coinfection process and give conditions for
coexistence of multiple viruses. Multiple other works exist that
investigate the existence and interaction of multiple viruses in
the setting of competing viruses [5], [6], [18], [21], in which
infection with one virus provides immunity to the other (cross-
immunity).

Newman and Ferrario [13] study an SIR-like epidemic
model, where the infection with one virus is a prerequisite for
the infection with a second virus. The authors use a general
configuration network model and evaluate their spreading
process on two examples: one network with a Poisson degree
distribution and one with a power-law degree distribution.
Their model is different from ours as they consider a sequential
process, in which both viruses spread at well separated times
rather than in parallel. Also, our work is a generalization of
the SIS-model and not of the SIR-model.

Wu et al. [28] study a different superinfection model by
means of linear stability analysis and extensive computer
simulations on networks with power-law degree distributions.
Conditions for coexistence in terms of the reproductive num-
bers of both viruses are given.

Superinfection has been used as a feature in many models
in the field of computational biology. Prado et al. [17] show
- based on computer simulations - how coevolutionary cycles
between pathogen virulence and sociality for hosts in contact
networks are influenced by the possibility of superinfection.
Leventhal et al. [8] show analytically and with simulations how
the topology of an underlying contact network may impact the
spread of competing viruses in the SIS-model. In their work,
the second virus appears after the first virus has reached an
endemic state, but can only spread to the subpopulation of still
susceptible nodes, as they assume cross-immunity. Our work
can be regarded as complementary, as we instead restrict the
virus to spread only in the subpopulation of nodes already
infected by the first virus.

A similar effect to superinfection appears in informa-
tion diffusion processes between different pieces of infor-
mation (contagions) that traverse the network. Myers and
Leskovec [12] show that interaction between contagions can
change their relative spreading properties, having a major
impact on the diffusion process. Similar effects might trigger
information cascades [7] and are observable as interacting
waves in networks [10].

III. MODELING SUPERINFECTION

This section is divided in two parts: First, we present
the standard Markovian SIS-model of epidemic spreading
and point out some of its properties. Second, we show how
this model can be generalized to describe superinfection by
introducing mutations and additional viruses.
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Fig. 1. Markov graph of the SIS-model for the complete network of N
nodes. Each vertex here represents one possible state of the Markov chain and
is labeled with the total number of infected nodes of the underlying network.
Edges represent the transition rates between neighboring states. State 0 is an
absorbing state, as there are no new infections possible once all nodes are
cured.

A. The SIS-model

The standard SIS-model is a Markov chain in which each
node in a network can be in two possible compartments: I
for infected or S for susceptible (to infection). Two under-
lying Poisson processes govern the transition between these
compartments: the curing process is a nodal transition that
changes the node’s compartment from I to S (curing) with a
fixed rate of δ. The infection process is a link based transition
and changes the compartment of a node from S to I (infecting)
with a fixed rate of β for each link of a susceptible node to
an infected neighbor. Both rates β and δ are assumed to be
fixed and global constants for the whole network. The fraction
τ = β/δ is called the effective infection rate.

Depending on τ , different behaviors of the SIS process
are observed. A very low τ (for a specific topology) results
in a relatively short survival time of the virus, as the average
hitting time of the absorbing state of the Markov process is
very low as well. However, there exists an epidemic threshold
τc for which the virus becomes endemic and infects a constant
fraction of nodes for a considerably longer period of time [15].

Given N nodes and two compartments, the network can
be in 2N different states, which define the state space of
the Markov chain. The exponential growth of the state space
makes an exact computation infeasible for larger networks.
To deal with this issue, graph-automorphisms of the network
can be used to ”lump” certain states together (see Simon et
al. [20]). This allows for polynomial sized representation for
networks with symmetric infectious states like the complete
network (shown in Figure 1) or the star network. However, this
approach is not feasible for all networks. In order to analyze
the epidemic process in these networks as well, mean-field
approximations are frequently used, which we describe further
in Section IV.

B. The superinfection SIkS-model

We propose a natural extension of the standard SIS-model
which we call the SIkS-model. In this model, there exists a
total number of k infection compartments I1, . . . , Ik linked to
viruses 1 to k, which constitute an infection hierarchy: S is
only susceptible to infections by virus 1, nodes in compartment
Ij are only susceptible to infections by the next higher virus
j + 1, for j = 1, . . . , k − 1. The infection rates β1, . . . , βk
describe the rate at which these infections occur. See Figure 2a
for an illustration of these link based transitions.

Depending on the current compartment, there are k curing
rates δ1, . . . , δk which are nodal transitions back to S. We also
introduce nodal mutation with rates µ1, . . . , µk as a second
force of infection, which allows a node to switch to the next



higher infection level without exposure to the next higher
virus by a neighbor. Figure 2b illustrates these node based
transitions.

The SIkS-model reduces to the SIS-model for k = 1
and µ1 = 0 and to the ε-SIS-model [25], [26] (which is an
SIS-model that allows for self-infection) for µ1 = ε for some
small ε > 0. The size of the state space for the SIkS-model is
(k + 1)N .

In order to study the effect of superinfection, we confine
ourselves to k = 2 for the remainder. In this case, the complete
process is governed by 6 parameters, namely: β1, β2, δ1, δ2, µ1

and µ2. We will occasionally call β2 superinfection rate, in
contrast to β1 which we simply call infection rate.

Finding a succinct representation of the Markov chain for
the complete network in the SIkS-model for k = 2 is more
complex than for the SIS-model. As we have two different
viruses in the network, we can no longer identify a state
with the total number of infected nodes. Additionally, there
exist new transitions due to the introduction of mutation.
Figure 3 shows a succinct representation of these transitions
in a Markov chain of size 1

2 (N + 1)(N + 2), where N is
the total number of nodes. The state space counts all possible
combinations for the total number of infected nodes in the
network per virus.

In the star network, the spread of viruses is dominated by
the compartment of the center node. If the center node is in
compartment S, mutation is the only way of infecting new leaf
nodes, as the only neighbor of a each leaf node is susceptible.
Similarly, the only way of virus 2 to spread towards leaf nodes
is to infect the center node, which is only possible once it is in
compartment I1. The compartment of the center node is like
a switch that determines which virus may currently spread
towards leaf nodes, which are the majority of all nodes in the
star network.

Hence, the state space of the Markov chain of the star
network is partitioned into 3 groups according to the 3 possible
compartments of the center node. For each group, the states
are further ordered similarly to the complete network by all
possible combinations of the number of infected leaf nodes
by each virus. Figure 4 shows a succinct representation of all
possible transitions in the star network. The size of the state
space for this Markov chain is 3

2N(N + 1), where N is the
number of leaf nodes (thus the total number of nodes is N+1).

IV. MEAN-FIELD APPROXIMATION

The exponentially growing state space of the Markov
process imposes a hard challenge for the analysis of epidemics,
especially for larger networks. In order to reduce the size of the
governing equations, mean-field approximations are frequently
applied in literature [1], [16], [23]. The use of mean-field
approximations allowed for the discovery of some interesting
results for the standard SIS-model, like a lower bound for the
epidemic threshold by the inverse of the spectral radius of the
adjacency matrix [27].

The recently introduced GEMF-model [19] is a generalized
mean-field approximation of epidemic processes with multiple
compartments in multilayer networks. We adopt the following
GEMF-notations: each compartment is labelled by a number

I1 I2 Ik-1 IkS
β1 βkβ2

(a) Link Transitions
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(b) Nodal Transitions

Fig. 2. Transition rate graphs for the SIkS-model.
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Fig. 3. Superinfection in the complete network: the state space of the Markov
process consists of tuples (i, j), where i nodes are infected with virus 1 and
j nodes are infected by virus 2, leaving N − (i+ j) nodes in compartment
S. Shown are all the possible outgoing state transitions from state (i, j) with
the according rates.

from 1 to M . The state of a node i at time t is xi(t) = em, if i
is in compartment m at time t. The vector em is a unit-vector,
which is 0 at every position besides position m, where it is
1. As each entry of xi(t) is a Bernoulli random variable, the
expected value of xi(t) is given by the compartment occupancy
probability vector:

vi(t) = E[xi(t)] = [Pr[xi(t) = e1], . . . ,Pr[xi(t) = eM ]]T

We are particularly interested in the average fraction of
nodes that belong to a compartment m. This is equivalent to
vm(t) for any time t for the complete network.

In our model of superinfection, we have M = 3 compart-
ments labelled with S, I1, I2. We use two layers1 to describe
the spreading process of the viruses. Each layer has an influ-
encer compartment, which determines the spreading condition
for the link based transitions. The influencer compartment of
layer 1 is I1, meaning that a node which has a neighbor in
compartment I1 on layer 1 undergoes a link transition with
the specific rates in the transition matrix of layer 1, which
we name Aβ1 . Similarly, the influencer compartment of layer
2 is I2, so any node with a neighbor in compartment I2 on
layer 2 undergoes a state transition with the specific rates in the
transition matrix Aβ2

of layer 2. In addition, there exists a third
transition matrix Aδ , which describes all the nodal transitions
and thus needs no influencer compartment. For our model of

1The GEMF-model allows for different contact networks on different layers,
so it is possible to have two viruses that spread in the same population of nodes
but over different links. In our case, both viruses use the same network.
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Fig. 4. Superinfection in the star network with N leaf nodes: the state space
of the Markov process consists of triplets (C, i, j), where C describes the
compartment of the central node, i the number of leaf nodes that are infected
by virus 1 and j the number of leaf nodes that are infected by virus 2. Shown
are all the possible outgoing state transitions from the states (S, i, j), (I1, i, j)
and (I2, i, j) with their corresponding rates.

the superinfection, these matrices are given by

Aβ2
=

[
0 0 0
0 0 β2
0 0 0

]
, Aβ1

=

[
0 β1 0
0 0 0
0 0 0

]

and Aδ =

[
0 µ1 0
δ1 0 µ2

δ2 0 0

]
.

The GEMF-equations [19] are a set of non-linear differential
equations that describe the behaviour of the epidemic over time
for i = 1, . . . , N :

dvi
dt

= −QTδ vi −
L∑
l=1

 N∑
j=1

(al)ijvj,ql

QTβl
vi (1)

where L is the number of layers and Al with elements
(al)ij is the adjacency matrix of the contact network of layer
l with ql being the corresponding influencer compartment. The
matrices Qδ, Qβ1

and Qβ2
are the Laplacians matrices of the

matrices Aδ, Aβ1 and Aβ2 , where in general the Laplacian
matrix Q of a matrix A is defined as:

Q = diag

 N∑
i,j=1

(aij)

−A. (2)

Solving (1) gives a first order approximation for the average
fraction of nodes in each compartment for the steady state of
the underlying Markov process. For the complete network, the
GEMF-equation reduces to the following:

d

dt

[
vS
vI1
vI2

]
= −

[
µ1 −δ1 −δ2
−µ1 δ1 + µ2 0
0 −µ2 δ2

][
vS
vI1
vI2

]

− (N − 1)vI1

[
β1 0 0
−β1 0 0
0 0 0

][
vS
vI1
vI2

]

− (N − 1)vI2

[
0 0 0
0 β2 0
0 −β2 0

][
vS
vI1
vI2

]
.

(3)

The quality of the GEMF-approximation, is assessed by a
comparison between the solution of (3) and the exact process
for the complete network of N = 100 nodes. The values of the
fractions of the exact process were determined by continuously
applying the transition matrix of the Markov process until the
rate of change in the fraction of nodes in each compartment
was less than ε = 10−6 for the last 10 iterations. We assume
that the steady state has been reached if this condition is true.
The parameters were set to δ1 = δ2 = 1 and µ1 = µ2 = 0.001,
while values ranging from 0.01 to 0.1 for β1 and β2 were
investigated. The results are shown in Figure 9.

There exists a discrepancy in the number of infected nodes
by virus 1, which is most of the time underestimated by GEMF
especially for higher superinfection rates. The number of
infected nodes by virus 2, however, seems to be overestimated
by GEMF, which is most apparent for higher superinfection
rates. Figure 5 shows the convergence of both, the exact
process and the GEMF-approximation for β1 = β2 = 0.1.
These parameters corresponds to the upper right corner of the
plots from Figure 9, where the discrepancy is observable.

Apart from giving a rather inaccurate estimation on the
fractions for the steady state, GEMF shows a damped oscil-
lation not observable for the exact process for the first 10
time units. These oscillations might arise in cases where the
average fraction of virus 1 nodes approaches 0, indicating a
near-extinction event from which the viruses recover. A similar
artifact is known from differential equations for predator prey
models, and is sometimes coined the atto-fox problem [4],
where a population of less than one individual, which would
be practically extinct, is able to resurrect. As a side-effect, the
proportion of infected nodes by virus 2 is overestimated, as it
would inevitably extinct soon after virus 1 as well.

These observations lead us to the conclusion that the
GEMF-approximation is reasonably accurate except for cases
in which the infection rate β1 is above the epidemic threshold
together with a relatively high superinfection rate β2. The next
section will elaborate on the interaction of both viruses in
general.

V. THE COURSE OF SUPERINFECTION

The course of a superinfection is divided in 3 phases:
phase 1 begins with all nodes being susceptible, so only
mutations can move a node from compartment S to I1. The
nodal mutations are necessary, but are set intentionally at small
rates (µ1 = µ2 = 0.001) in comparison to the nodal curing
δ1 = δ2 = 1. This assures that mutation has only a minor
impact on the overall rate of newly infected nodes compared
to their spreading over links. We want to outline the impact
of the spreading rates β1 and β2 on the process, Therefore,
we keep δ1, δ2, µ1 and µ2 at those default values for all our
analysis.

Once enough nodes are infected by mutations, the spread-
ing rate β1 determines, whether virus 1 becomes endemic
(which means that it infects a larger part of the network) or
not. If β1 is too low, the process remains at phase 1 and apart
from tenuous mutations, there is only a tiny number of infected
nodes by virus 1 observable. Thus, an occurrence of virus 2
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Fig. 5. The exact process (right) and the GEMF approximation (left) over 50 time units with β1 = β2 = 0.1. At the beginning of the process, GEMF shows
strong oscillations.
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Fig. 6. A single simulation of the superinfection process in the complete network with N = 100, β1 = 0.1, δ1 = δ2 = 1.0 and µ1 = µ2 = 0.001. All 3
phases of the superinfection repeat rapidly in the cyclic case while they occur only once in the time interval of 400 for the acyclic case.

is unlikely2.

If β1 is higher than the epidemic threshold of the cor-
responding network, virus 1 becomes endemic, eventually
acquiring a larger fraction of the network. This marks a
transition into phase 2, which is characterized by the first
mutation events that will move single nodes from I1 to I2.
Similar to virus 1 and β1, the rate of β2 determines, whether
virus 2 will become endemic as well: If β2 is too low to infect
enough other nodes via spreading, virus 2 is only observed
in tiny numbers and the process remains in Phase 2 with
virus 1 persistent in the network. If β2 is above a certain
threshold, which we call σl, virus 2 becomes endemic and
spreads inside the population that was previously infected,
effectively reducing the fraction of infected nodes of virus 1.

The outbreak of virus 2 marks the transition to phase
3 in which a coexistence of both viruses in the network is
established. In coexistence, both viruses infect (on average) a
constant fraction of nodes in the network. The duration of the

2As the majority of the nodes remains in compartment S, virus 2 would
also not be able to spread effectively.

coexistence depends on another threshold, which we call σu.
If β2 is above σu, the spread of virus 2 is so strong that virus 1
can no longer infect enough new susceptible nodes to survive.
If there are no more nodes in compartment I1 left, the number
of nodes in compartment I2 goes down to zero as well, as
the tenuous mutations are a much weaker force than the nodal
curing. We call the extinction of both viruses in the network an
extinction event. After an extinction event, the superinfection
restarts at phase 1 and repeats until the next extinction event.
Thus, we call this process cyclic.

If β2 is in between σl and σu, a stable coexistence is
maintained. Extinction events are unlikely and the process
remains in phase 3. We call this process acyclic. Figure 7
illustrates the course of a cyclic and an acyclic superinfection
in comparison, obtained by simulation.

The probability distribution of the Markov state space re-
veals the difference between acyclic and cyclic superinfection:
In the former case, the probability mass is concentrated at
network states in which a mixture of both viruses exist (Figure
7a). However, if β2 approaches σu, the probability mass shifts
to network states, where only one or even none (extinction)
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Fig. 7. Distribution of probabilities over the state space of the Markov process of superinfection in a complete network of 100 nodes. The rates are µ1 =
µ2 = 0.001, δ1 = δ2 = 1.0 and β1 = 0.1. In an acyclic coexistence (left) the probability mass is divided between states of mixed compartments. In a cyclic
coexistence (right), the border states in which only one sort of virus exists have a considerably higher amount of probability mass than the mixed states.

viruses exist (Figure 7b).3

To further investigate the extinctions, we simulated super-
infection in the complete network and counted the number of
simulations that resulted in at least one extinction event. More
precisely, for each combination of β1 and β2 over a certain
range, we started 10 simulations for a fixed amount of time
T = 400, which we assume to be long enough to observe
possible extinctions in most cases. We count a simulation as
extinct if two conditions are fulfilled: there is a time t1 at
which at least 10% of all nodes are infected with virus 2 and
there is a time t2 > t1 at which all nodes are cured.

We observe that in this experiment the extinctions seem
to be related to the second largest eigenvalue ζ2 of the
infinitesimal generator Q of the Markov process. Contrary to
the standard SIS-model [24], the eigenvalue ζ2 can be complex
in the superinfection model. Figure 8 hints that the number of
extinct simulations is higher for pairs of β1 and β2 that have
a complex ζ2. Although a real-valued ζ2 does not necessarily
imply an acyclic superinfection, the experiment suggests that
a complex ζ2 results most likely in a cyclic superinfection.
Furthermore, discrepancies in Figure 9 seem to happen mostly
when ζ2 is complex, suggesting that GEMF has difficulties to
capture extinctions.

Although the interactions of the 6 parameters of the
superinfection model are complex, a qualitative description
on their influence on the average number of nodes for each
compartment can be devised as shown in Table I. The super-
infection rate β2 is a noteworthy exception as this parameter is
particularly sensitive. Since virus 2 spreads inside a network
that dynamically changes its size in response to the infection,
we assume that σl and σu might depend on β1 and (to a lesser
extent) on µ1.

Another strong influence is the topology of the underlying
contact network. Figure 10 shows the exact process of the

3For a short video on the transition visit http://www.nas.ewi.tudelft.nl/index.
php/maertens.
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curve interpolates for each β1 the smallest β2 for which the second largest
eigenvalue of the infinitesimal generator of the Markov process is no longer
real. The underlying network is the complete network of N = 100 nodes.

Markov chain from Figure 4 and its GEMF-approximation in
the star network of N = 100 nodes. In comparison to the
complete network shown in Figure 5, there seems to be no
combination of β1 and β2 that allows for a larger support of
compartment I2. However, β2 has an influence on the number
of nodes infected by virus 1, which diminishes for higher
values due to possible extinction events.

VI. CONCLUSIONS

In summary, we proposed a natural extension of the stan-
dard SIS-model to analyze nested epidemic processes in which
a dominant virus spreads within the population of a another
virus. We presented a succinct representation of the Markov



TABLE I. QUALITATIVE INFLUENCE OF THE PARAMETERS ON THE
AVERAGE NUMBER OF THE NODES BELONGING TO THE THREE

COMPARTMENTS.

µ1 µ2 β1 β2 δ1 δ2

S - + - + + +

I1 + - + - - +

I2 + + + * - -

A +-sign indicates that a high rate of the corresponding parameters will increase the
average number of nodes in that compartment while a −-sign indicates a decrease. The
∗-sign for the superinfection rate β2 on compartment I2 is a special case: in general,

the value has to be high to infect more nodes, but a too high value results in an
extinction event, negatively influencing the average number of superinfected nodes.

chain for the complete network and the star network that we
used to evaluate the quality of the GEMF-approximation. In
particular, we observed that for high superinfection rates β2,
the GEMF model shows damped oscillations and overestimates
the fraction of infected nodes of the stronger virus.

A closer look at the exact process revealed rich and
complex dynamics, ranging from endemic behaviour, stable
coexistence to extinction cycles triggered by the occurrence of
extinction events. It has been shown that the superinfection
processes in 3 different phases that are dependent on the
parameters. In particular, β2 is the most sensitive parameter
as it determines whether the process repeats itself in cycles or
maintains a state of stable coexistence.

If β2 is higher than a certain threshold σu, an extinction
event will eventually eradicate both viruses. We expect σu to be
strongly dependent on the infection rate β1 of the weaker virus
and the topology of the underlying network. As we focused
our analysis on β1 and β2, it remains open to which extent the
nodal parameters δ1, δ2, µ1 and µ2 influence the process. How-
ever, their influence is reflected in the infinitesimal generator
Q of the Markov process for which we observe that complex
eigenvalues may occur. In particular, a complex second largest
eigenvalue ζ2 seems to be a sufficient condition to observe
extinction cycles.

So far, we were unable to find conditions for coexistence
or extinctions for the star network, which seems to be more
robust against superinfection. We further conjecture that the
inaccuracies in the GEMF model are correlated to the occur-
rence of extinction events.

Considering our model, a superinfection that cures from
compartment I2 back to I1 instead of S might be worth investi-
gating as well, with respect to real-world applications. Finally,
an investigation of bigger hierarchies of 3 or more viruses in
the SIkS-model promises even more complex interactions.
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Fig. 9. Expected fraction of nodes in corresponding compartments in the steady state obtained by GEMF (top) and the exact process (bottom) in a complete
network of N = 100 nodes.
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Fig. 10. Expected fraction of nodes in corresponding compartments in the steady state obtained by GEMF (top) and the exact process (bottom) in a star
network of N = 100 nodes.


