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Orthogonal Eigenvector Matrix of the Laplacian
Xiangrong Wang and Piet Van Mieghem

Abstract�The orthogonal eigenvector matrix Z of the Lapla-
cian matrix of a graph with N nodes is studied rather than its
companion X of the adjacency matrix, because for the Laplacian
matrix, the eigenvector matrix Z corresponds to the adjacency
companion X of a regular graph, whose properties are easier.
In particular, the column sum vector of Z (which we call
the fundamental weight vector w) is, for a connected graph,
proportional to the basic vector eN = (0; 0; : : : ; 1), so that more
information about the spec�cs of the graph is contained in the row
sum of Z (which we call the dual fundamental weight vector ').
Since little is known about Z (or X), we have tried to understand
simple properties of Z such as the number of zeros, the sum of
elements, the maximum and minimum element and properties
of '. For the particular class of Erd�os-Rényi random graphs,
we found that a product of a Gaussian and a super-Gaussian
distribution approximates accurately the distribution of 'U , a
uniformly at random chosen component of the dual fundamental
weight vector of Z.

I. INTRODUCTION
Networks abound more than ever before. While many graph

metrics have been proposed, that are reviewed e.g. in [1],
[2], [3], the eigenvector structure of graph related matrices
is hardly understood. A graph on N nodes can be represented
by an N � N adjacency matrix A with aij = 1 if the pair
of nodes is connected, otherwise aij = 0. Another graph
related matrix is the Laplacian matrix Q = � � A, where
� = diag(di) is the N � N diagonal degree matrix and
the degree of node i is di =

PN
j=1 aij . When con�ning

to an unweighted and undirected graph, the Laplacian matrix
Q is symmetric and possess the eigenvalue decomposition
Q = ZMZT . The equality implies that all information at
the left-hand side, that we call the topology domain, is also
contained in the right-hand side, that we call the spectral
domain. Most insight so far in graphs is gained in the
topology domain that allows a straightforward drawing of a
graph: nodes are interconnected by links and display a typical
graph representation, attractive and understandable to humans.
The spectral domain, consisting of the set fz1; z2; : : : ; zNgof
eigenvectors of the Laplacian Q and the corresponding set of
eigenvalues in M , is less intuitive for humans. However, as
mentioned in the preface of [4], the spectral decomposition
Q = ZMZT (or A = X�XT ) represents a transformation of
a similar nature as a Fourier transform, which suggests that
some information is better or more adequately accessible in
one domain and other information in the other domain.
Most spectral results are obtained for eigenvalues, and in

particular the largest eigenvalue or spectral radius [5] for
the adjacency matrix and the second smallest eigenvalue or
the algebraic connectivity [6] for the Laplacian matrix. The
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spectral radius plays an important role in characterizing the
dynamical process on networks, such as SIS (susceptible-
infected-susceptible) epidemic spread [7]. The algebraic con-
nectivity [6] plays an important role in bounding the node and
link connectivity, i.e. the number of nodes and links that have
to be removed to disconnect the graph. Correspondingly, the
algebraic connectivity is considered as a robustness measure
against node/link failures [8]. The sum of the inverse Laplacian
eigenvalues, called the effective graph resistance [9], can be
used to improve the robustness of complex networks [10].
While the number of mathematical results on other eigen-

values is already considerably less, results on eigenvectors are
relatively scarce [11], [12]. Most results on eigenvectors focus
on the principle eigenvector [13], the eigenvector correspond-
ing to the largest eigenvalue of the adjacency matrix of a graph,
or the Fiedler vector [6], [14], the eigenvector belonging to the
second smallest eigenvalue of the Laplacian matrix.
Here, we approach the challenge of unravelling the �hidden

information� in the orthogonal eigenvector matrix Z of the
Laplacian matrix by extensive simulations, because the purely
mathematical discovery of nice properties of the matrix Z
seems of a daunting dif�culty. Since many properties of
the Erd�os-Rényi (ER) graphs Gp(N) are known [15], we
concentrate here only on this class of graphs. An ER graph
Gp (N) on N nodes and with link density p is generated
by randomly connecting a pair of nodes with a probability
p, independently of any other pair. Although ER graphs are
generally not good representatives of real-world networks,
we believe that, if we cannot understand this simple class
of random graphs, the more realistic (but more complex)
classes of graphs are certainly beyond reach. Thus, here, we
make a �rst step to learn about the properties of orthogonal
eigenvector matrix Z of the Laplacian by con�ning to ER
graphs. An extra bonus, apart from a computational advantage,
is that relatively small sizes N in the class Gp(N), even
below N = 100, already give a good re�ection of the general
properties for any N .
The paper is organized as follows. Section II presents the

de�nition and the orthogonality properties of the eigenvector
matrix of the Laplacian. Section III illustrates the properties of
the eigenvector matrix. The dual fundamental weight vector is
introduced and the distribution of the dual fundamental weight
is studied in Section IV. Section V concludes the paper.

II. EIGENSTRUCTURE OF THE LAPLACIAN Q OF A GRAPH

As in [4], we denote by zk the eigenvector of the N � N
symmetric matrix Q belonging to the eigenvalue �k, normal-
ized so that zTk zk = 1. The eigenvalues of Q = QT are real
and can be ordered as �1 � �2 � : : : � �N . The all-one vector
u = (1; 1; : : : ; 1) is the eigenvector belonging to �N = 0,
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since the row sum is Qu = 0 for any Laplacian matrix. Let
Z be the orthogonal matrix with the eigenvectors of Q in the
columns,

Z =
�
z1 z2 z3 � � � zN

�
or explicitly in terms of the m-th component (zj)m of eigen-
vector zj ,

Z =

2666664
(z1)1 (z2)1 (z3)1 � � � (zN )1
(z1)2 (z2)2 (z3)2 � � � (zN )2
(z1)3 (z2)3 (z3)3 � � � (zN )3
...

...
...

. . .
...

(z1)N (z2)N (z3)N � � � (zN )N

3777775 (1)

where the element Zij = (zj)i. The eigenvalue equation
Qzk = �kzk translates to the matrix equation Q = ZMZT ,
where M = diag(�k).
The relation ZTZ = I = ZZT (see e.g. [4, p. 223])

expresses, in fact, double orthogonality. The �rst equality
ZTZ = I translates to the well-known orthogonality relation

zTk zm =
NX
j=1

(zk)j (zm)j = �km (2)

stating that the eigenvector zk belonging to eigenvalue �k is
orthogonal to any other eigenvector belonging to a different
eigenvalue. The second equality ZZT = I , which arises from
the commutativity of the inverse matrix Z�1 = ZT with the
matrix Z itself, can be written as

PN
j=1 (zj)m (zj)k = �mk

and suggests us to de�ne the row vector in Z as

ym = ((z1)m ; (z2)m ; : : : ; (zN )m) (3)

Then, the second orthogonality condition ZZT = I implies
orthogonality of the vectors

yTl yj =
NX
k=1

(zk)l(zk)j = �lj (4)

The fundamental weight !k = uT zk and the dual fun-
damental weight 'j = uT yj have been introduced in [16].
The corresponding vectors ! = (!1; !2; � � � ; !N ) and
' = ('1; '2; � � � ; 'N ) can be written as the column sum
and the row sum, respectively, of the orthogonal matrix Z

! = ZTu (5)

and
' = Zu (6)

Instead of concentrating on the adjacency matrix A, we
consider here the Laplacian matrix Q, mainly because the all-
one vector u is always an eigenvector of Q, which greatly
simpli�es the fundamental weight vector !. Indeed, since the
normalized Laplacian eigenvector zN = up

N
belonging to

the smallest eigenvalue �N = 0 is orthogonal to all other
eigenvectors, it follows from (5) that, in a connected graph,

! = (0; 0; � � � ;
p
N) =

p
NeN (7)

III. EXPLORING PROPERTIES OF THE ORTHOGONAL
EIGENVECTOR MATRIX Z OF THE LAPLACIAN Q

Via extensive simulations on Erd�os-Rényi (ER) graphs
Gp(N), initial insight is gained in the sum of all the elements,
the number of zero elements and the maximum and the
minimum element in the eigenvector matrix Z of the Laplacian
matrix Q.

A. The sum sZ of the elements in Z
Let sZ be the sum of the elements in the matrix Z. Using

the de�nitions (5) and (6) for a connected graph, the sum
sZ = uTZu = uT' as well as sZ =

�
ZTu

�T
u = !Tu =p

N , where (7) has been used. In a disconnected graph G, the
sum sZ is

sZ =
cX
j=1

NX
k=1

(zj)k

where c is the number of components in the disconnected
graph G. For the case c = 2, more details are discussed in the
Appendix .
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Fig. 1. The probability density function of sZ in ER random graphs Gp (N)
for N = 50 and various average degree dav = p (N � 1), ranging from
dav = 1 up to dav = 7. The y-axis is in log-scale.

Fig. 1 shows the probability density function fsZ (z) in
ER graphs Gp(N) for N = 50 and various average degree
dav = p(N � 1), ranging from dav = 1 up to dav = 7. We
have generated 108 ER graphs Gp (50). Fig. 1 demonstrates
that the maximum value of fsZ (z) at z =

p
N increases with

the average degree dav . For dav � 4, the maximum value
of fsZ (z) is dominantly high because most generated graphs
are connected. Indeed [17], for N = 50 and dav � 3:9,
Pr[Gp(N) is connected] is about 36%. Moreover, ignoring the
peak value at z =

p
N , we observe that fsZ (z) is roughly

symmetric around 0.

B. The number zZ of zero elements in Z
The number of zero elements in the orthogonal matrix Z

is an integer smaller than N2 �N , because each eigenvector
is different from the zero vector and, thus, should contain at
least one non-zero element. Hence, 0 � zZ � N2�N . In the
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Fig. 2. The probability Pr[zZ = k] that the number of zeros in Z equals
k in ER random graphs Gp (N) for N = 50 and various average degree
dav = p (N � 1), ranging from dav = 1 up to dav = 7. The y-axis is in
log-scale.

simulations, an element in Z with absolute value smaller than
10�10 is considered as zero.
Fig. 2 shows that, in ER graphs of N = 50 nodes, the

average number E[zZ ] of zero elements decreases with the
average degree dav . The probability Pr[zZ = 0] that there
is no zero element increases with dav . More speci�cally, for
small average degrees, dav = 1 and dav = 2, the average
number E[zZ ] of zero elements is high and the probability that
Pr[zZ = 0] is small (and almost zero for dav = 1). For dav �
4, the probability Pr[zZ = 0] is dominantly high. Moreover,
only for dav � 3, the curve Pr[zZ = k] versus k is reasonably
stable, but for dav � 4, large scattering is observed.

C. The minimum and maximum element in Z
We denote the minimum element in the orthogonal matrix

Z by �Z = minijzij and the maximum element by �Z =
maxijzij .
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Fig. 3. The probability density function f�(z) of the minimum element in
Z in ER random graphs Gp (N) for N = 50 and various average degree
dav = p (N � 1), ranging from dav = 1 up to dav = 7. The y-axis is in
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Figs. 3 and 4 demonstrate that �Z
d
= ��Z , where

d
= denotes

equality in distribution, which is less strong than maxijzij =
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Fig. 4. The probability density function f�(z) of the maximum element in
Z in ER random graphs Gp (N) for N = 50 and various average degree
dav = p (N � 1), ranging from dav = 1 up to dav = 7. The y-axis is in
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�minijzij . Fig. 4 indicates that the lower the average degree
dav , the higher the probability that the maximum �Z attains
the value 1. If only one element is non-zero, then that element
must equal �1 because of the normalization of eigenvectors.
If the graph is connected, then zN = up

N
(else, there are

c components leading to a different normalization of the u
vector, see the Appendix ). The second orthogonality condition
(4) requires that the square of a row sum in Z equals one so
that, for node j,

1 =
NX
k=1

(zk)
2
j =

N�1X
k=1

(zk)
2
j +

1

N

implying that 1
N � max1�k�N (zk)2j � 1� 1

N . Hence, in any

connected graph, we �nd that 1p
N
� �Z �

q
1� 1

N < 1 and,

similarly, �
q
1� 1

N � �Z � � 1p
N
.

IV. DUAL FUNDAMENTAL WEIGHT VECTOR '
In this section, we study, both numerically and analytically,

the distribution of a random component in the dual fundamen-
tal weight vector ', de�ned in (6). First, we note [16] that the
sum sZ2 of the elements of Z2 is

sZ2 = u
TZ2u = !T'

and with ! =
p
NeN , we have for a connected graph,

sZ2 =
p
N'N

where 'N =
PN

j=1(zN )j is the N -th row sum of Z.

A. Randomly chosen component of the dual fundamental
weight vector '
As shown in [16], the vector ! is invariant with respect

to a node relabeling transformation, but the dual fundamental
weight vector ' is not, nor is sZ2 . The consequence is that,
by generating Erd�os-Rényi random graphs, the node labeling
is uniformly distributed so that the random variable sZ2

d
=
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p
N'U , where U 2 [1; N ] is a discrete uniform random

variable.
The expectation of a randomly chosen element 'U is

E ['U ] =
NX
k=1

'k Pr [U = k] =
1

N

NX
k=1

'k =
1

N
uT'

Since uT' = uT! =
p
N (see [16]), we �nd that

E ['U ] =
1p
N

(8)

The variance of 'U , Var['U ] = E
�
'2U
�
� (E ['U ])2 follows,

with
PN

k=1 '
2
k = N (see [16]) from

E
�
'2U
�
=

NX
k=1

'2k Pr [U = k] =
1

N

NX
k=1

'2k = 1

so that
Var ['U ] = 1�

1

N
(9)

Extensive simulations on 'U in Erd�os-Rényi random graphs
Gp(N) are performed. We simulate ER random graphs for
various N , where N = 10; 20; 30; � � � ; 100 and with the
link density p = 0:3. For each N , we have simulated 108 ER
random graphs that resulted in 108 realizations of 'U . The
probability density function f'U (z) for each N is plotted and
�tted.
Next, we show that 'U does not depend on the degree vector

d for a regular graph. We start from

dT' =

NX
k=1

dk'k = N

NX
k=1

dk'k Pr [U = k] = NE [dU'U ]

Thus, the correlation coef�cient

� (dU ; 'U ) =
1

N
dT'� E [dU ]E ['U ] =

1

N
dT'� 2L

N

1p
N

and

� (dU ; 'U ) =
1

N

�
dT'� 2Lp

N

�
The dependence or correlation between the degree vector d
and the dual fundamental weight vector ' is zero provided
dT' = 2Lp

N
. In a regular graph, for example, d = ru,

2Lp
N
= r

p
N and dT' = ruT' = ruT! = r

p
N , so that

� (dU ; 'U ) = 0. Simulations hint that � (dU ; 'U ) � 0 for ER
random graphs, too! Fig. 5 demonstrates that the probability
density function f'U (z) is approximately an invariant with
respect to the average degree dav (and thus the link density p
in Gp (N)).

B. The product of a Gaussian and a super-Gaussian distrib-
ution

The probability density function f'U (z) is accurately �tted
by the probability density function

fX (z) = c exp
�
�b(z � z0)2

�
exp

�
�a(z � z0)4

�
(10)
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Fig. 5. The probability density function f'U (z) of 'U for connected ER
random graphs Gp(N) for N = 50 and vaious average degree dav , ranging
from dav = 4 up to dav = 10. The y-axis is in log-scale.

which is a product of a Gaussian and a super-Gaussian
distribution. A random variable Ym possesses a super-Gaussian
distribution, de�ned by

fYm (z) = Am exp [�a(z � z0)m]

wherem is an even integer and a > 0 is a positive real number.
Next, we focus on determining the parameters a; b and c

in (10). Since
R1
�1 fX(z)dz = 1, with z � z0 = x, we have

c

Z 1

�1
exp[�bx2 � ax4]dz = 1

The integral, proved in [18],Z 1

0

exp
�
�bu2 � au4

�
du =

1

4

r
b

a
e
b2

8aK 1
4

�
b2

8a

�
and where Ks (z) is the modi�ed Bessel function of the
Second Kind [19], determines c as

c =
1

2
R1
0
exp [�bu2 � au4] du

=

r
a

b

2e�
b2

8a

K 1
4

�
b2

8a

� (11)

Since fX (z) is a symmetric function around z0, all
odd centered moments around z0, E

h
(X � z0)k

i
=R1

�1 (x� z0)
k
fZ (x) dx, are zero and, thus E [X] = z0.

Combination with (8) shows that z0 = 1p
N
. We can compute

the variance Var[X] = E
h
(X � z0)2

i
explicitly as

Var [X] =
1

2b
h

�
y2

8

�
(12)

with

h (t) = 2t

 
K 3

4
(t)

K 1
4
(t)
+
K 5

4
(t)

K 1
4
(t)
� 2
!
� 1

where y2 = b2

a . Further, Var[X] is increasing with y from 0
(for y = 0) to 1

2b (when y !1). Using (9) yields

b =
h
�
y2

8

�
2
�
1� 1

N

� (13)
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while y2 = b2

a then leads to

a =
h2
�
y2

8

�
4y2

�
1� 1

N

�2 (14)

Hence, (13) and (14) indicate that b increases with y towards
1

2(1� 1
N )
, while a decreases with y towards 0.

C. Fitting result
Fig. 6 shows the natural logarithm of the probability density

function f'U (z) for 'U from simulations, �tted by the
function (10). As observed from Fig. 6, the simulations agree
astonishingly well with (10) for all N simulated in this paper.
Fig. 7 shows that the parameter y2 = b2

a is approximately
linear in N ,

y2 = 0:5N � 3:85 (15)

Substituting the linear function (15) into (14) and (13)
determines a and b analytically. As shown in Figs. 8 and 9, a
and b (red curve, theory from (14) and (13) with (15)) agree
well with simulations of 'U (black dots), after �tting a and b
from (10). Fig. 10 shows c from (11) and from �tting function
(10) for f'U (z) for each N . Fig. 11 presents z0 from (8) and
from the �tting function (10).
As shown in Fig. 8-11, the �tting parameters a; b; c; z0

in (10) from simulations agree well with equations (14),
(13), (11), (8), respectively. Thus, our simulations lead us to
believe that the distribution of the components of the dual
fundamental weight vector ' in Erd�os-Rényi random graphs
is given by (10), which is the product of a Gaussian and a
super-Gaussian. Fig. 8 and (14) (with (15)) show that a tends
as O (1=N) to zero with N , implying that, for large N , the
super-Gaussian disappears and the expected Gaussian behavior
(from random matrix theory) appears. The parameter a in (10)
constraints the Gaussian behavior, which is likely due to the
orthogonality conditions (2) and (4) that create dependence
among the eigenvector components. Indeed, the larger N , the
less the orthogonality conditions are con�ning, which suggest
that a would decrease inversely proportional to N , precisely
as observed in Fig. 8.
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Fig. 7. Fitting parameter y2 = b
a
as a function of N in ER graphs.
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Fig. 8. Fitting parameter a as a function of N in ER graphs.
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Fig. 9. Fitting parameter b as a function of N in ER graphs.

D. Very small sizes of N
We observe that when N < 8 (obtained at the point y2 < 0

in (15)), the simulation result is better �tted by a Gaussian
distribution, instead of the product of a Gaussian and a super-
Gaussian.
As shown in Fig. 12, the product of a Gaussian and super-

Gaussian distribution does not precisely �t the simulations at
the tail. When N is decreased to 6 in Fig. 13, the simulation
is �tted by a Gaussian distribution.

V. CONCLUSION
We have studied the eigenvector matrix Z of the Laplacian

matrix Q for a graph G with the aim to understand how
properties of Z contain information about the structure of G.
We �nd that the sum sZ of all the elements in Z increases
with the size of the graph as O

�p
N
�
. The higher the

average degree in a graph, the lower the number of zeros
in the eigenvector matrix. Moreover, the distribution of the
maximum element in the eigenvector matrix is the same as
the distribution of the minimum element.
The row sum of the eigenvector matrix Z of the Laplacian

Q, coined the dual fundamental weight ', in Erd�os-Rényi
random graphs follows closely the product of a Gaussian and
a super-Gaussian distribution.



6

8

6

4

2
ln

f ϕ
U
(z

)

21012
z

ER Graph
(N = 10)

Simulation
Fitting

8

6

4

2

ln
f ϕ

U
(z

)

3210123
z

ER Graph
(N = 20)

Simulation
Fitting

10

8

6

4

2

ln
f ϕ

U
(z

)

43210123
z

ER Graph
(N = 30)

Simulation
Fitting

10

8

6

4

2

ln
f ϕ

U
(z

)
4202

z

ER Graph
(N = 40)

Simulation
Fitting

8

6

4

2

ln
f ϕ

U
(z

)

3210123
z

ER Graph
(N = 50)

Simulation
Fitting

10

8

6

4

2

ln
f ϕ

U
(z

)

202
z

ER Graph
(N = 60)

Simulation
Fitting

12

10

8

6

4

2

ln
f ϕ

U
(z

)

42024
z

ER Graph
(N = 70)

Simulation
Fitting

14

12

10

8

6

4

2

ln
f ϕ

U
(z

)

4 2 0 2
z

ER Graph
(N = 80)

Simulation
Fitting

10

8

6

4

2

ln
f ϕ

U
(z

)

4202
z

ER Graph
(N = 90)

Simulation
Fitting

8

6

4

2

ln
f ϕ

U
(z

)

4202
z

ER Graph
(N = 100)

Simulation
Fitting

Fig. 6. Natural logarithm ln(f'U (z)) of the probability density function f'U (z) for ER graphs with p = 0:3 and various N , ranging from N = 10 to
N = 100.
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[5] D. Stevanović, Spectral Radius of Graphs. Academic Press, London
2015.

[6] M. Fiedler, �Algebraic connectivity of graphs,� Czechoslovak Mathemat-
ical Journal, vol. 23, no. 98, pp. 298�305, 1973.

[7] P. Van Mieghem, J. Omic, and R. E. Kooij, �Virus spread in networks,�
IEEE/ACM Transactions on Networking, vol. 17, no. 1, pp. 1�14,
February 2009.

[8] A. Jamakovic, and P. Van Mieghem, �On the robustness of complex
networks by using the algebraic connectivity,� NETWORKING Ad Hoc
and Sensor Networks, Wireless Networks, Next Generation Internet, pp.
183�194, 2008.

[9] W. Ellens, F. A. Spieksma, P. Van Mieghem, A. Jamakovic, and R. E.
Kooij, �Effective graph resistance,� Linear Algebra and its Applications,
vol. 435, pp. 2491�2506, 2011.

8

6

4

2

ln
f ϕ

U
(z

)

21012
z

ER Graph
(N = 8)

Simulation
Fitting

a = 0.12
b = 0.10
c = 1.02
z0 = 0.354

Fig. 12. Natural logarithm ln(f'U (z)) of the probability density function
f'U (Z) for 108 ER graphs with p = 2log(N)=N (to make sure the graph
is connected) and N = 8.

8

6

4

2

0

ln
f ϕ

U
(z

)

2101
z

ER Graph
(N = 6)

Simulation
Fitting

a = 0.4
b = 0
c = 1.2
z0 = 0.4079

Fig. 13. Natural logarithm ln(f'U (z)) of the probability density function
f'U (Z) for 108 ER graphs with p = 2log(N)=N (to make sure the graph
is connected) and N = 6.

[10] X. Wang, E. Pournaras, R. E. Kooij, and P. Van Mieghem, �Improving
robustness of complex networks via the effective graph resistance,� The
European Physical Journal B, vol. 87, no. 9, pp. 1�12, 2014.
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APPENDIX
We write the N �N symmetric matrix A as a block matrix

A =

�
A1 B
BT A2

�
where A1 is an (N �m)�(N �m) symmetric matrix and A2
is a m�m symmetric matrix with1 0 � m < N

2 . For example,
for a graph G, A1 and A2 are the adjacency matrices of two
subgraphs G1 and G2 of G, B represents the interconnection
matrix of the links between G1 and G2. The eigenvalue
equation Ax = � (A)x is written as the linear block set, with
the eigenvector xT =

�
v(N�m)�1 wm�1

�T ,�
A1v +Bw = � (A) v
BT v +A2w = � (A)w

where we choose the normalization xTx = 1, equivalent to
vT v + wTw = 1. If the coupling matrix B = 0, then the set
simpli�es to �

A1v = � (A) v
A2w = � (A)w

which illustrates that v and w are eigenvectors (satisfying
vT v+wTw = 1) belonging to the eigenvalue � (A), which is
also an eigenvalue of at least one matrix, A1 or A2, because
an eigenvector x is different from the zero vector, so that not
both v and w can be the zero vector.
In the case of the Laplacian Q of G, where u is an

eigenvector of Q1, Q2 and Q belonging to eigenvalue � = 0,
then it holds that �

Q1v = 0
Q2w = 0

where v = �u and w = �u with 1 = �2 (N �m) + �2m.
The latter is the equation of an ellipse with the two main axes

1p
N�m and 1p

m
,

�2�
1p
N�m

�2 + �2�
1p
m

�2 = 1 (16)

and any set (�; �) with both � 6= 0 and � 6= 0 on the
ellipse is a solution. Hence2, for m > 0, there exists in�nitely
many normalizations of the eigenvector of Q belonging to
the eigenvalue �N = 0. When m ! 0 (and hence � = 0),
the ellipse degenerates into the points � = � 1p

N
. Moreover,

we can construct two orthogonal eigenvectors (since the mul-
tiplicity of � = 0 is two). Let xT1 =

�
�u �u

�T and
xT2 =

�
u �u

�T , where (; �) is also a point on the above
ellipse. Orthogonality requires that

0 = xT1 x2 =
�
�u �u

�T � u
�u

�
= � (N �m) + ��m

leading to

 = � �m

� (N �m)�

1If m � N
2
, we can interchange subgraph G1 and G2 so that m < N

2
.

2When there are c disconnected subgraphs in G, the normalization proce-
dure results in c-dimensional ellipsoid leading to c � 1 degrees of freedom
to normalize the c eigenvectors belonging to eigenvalue �N = 0 of Q.

but also 1 = 2 (N �m) + �2m. Combined yields � =
� 1r�

�m

�
p
N�m

�2
+m

and, after using 1 = �2 (N �m) + �2m,

we �nd
� = ��

p
N �mp
m

(17)

and
 = � �

p
mp

N �m
(18)

In conclusion, with each choice of (�; �) as a point on the
ellipse, there correspond two points (; �) (with oppositive
sign) on the same ellipse, for which we obtain two orthogonal
vectors (�� = ��). All other eigenvectors are orthogonal on
x1 and x2. Thus, xTk =

�
vk wk

�T obeys xTk x1 = 0 and
xTk x2 = 0, �

�vTk u+ �w
T
k u = 0

vTk u+ �w
T
k u = 0

or �
� �
 �

� �
vTk u
wTk u

�
= 0

which only has the zero solution vTk u = wTk u = 0 because

det

�
� �
 �

�
= 1p

(N�m)m
> 0. Since all other eigenvectors

xk are orthogonal to u (with
PN

j=1 (xk)j = u
Txk = 0), the

sum of the elements in Z equals the sum of the elements in
x1 and x2:

sZ = (�+ ) (N �m) + (� + �)m
Introducing the expression (18) for  and (17) for � into

sZ gives us

sZ = �N + (�� �)
p
m
�p
N �m�

p
m
�

From 1 = �2 (N �m) + �2m, we eliminate � =
q

1��2m
N�m

and, after substitution, we have

sZ = N

r
1� �2m
N �m +

 r
1��2m
N�m ��

!
p
m
�p
N�m�

p
m
�

illustrating that, if m = 0 and the graph is connected, then
sZ =

p
N . Moreover, sZ is a function of the integer m and

the real number �. For the case 1 � m < N
2 , it is convenient

to denote y = �2m 2 (0; 1) and write

sZ(m; y)=N

r
1� y
N�m+

 r
1� y
N�m�

p
yp
m

!
p
m
�p
N�m�

p
m
�

For y = 0, we have sZ (m; 0) =
p
N �m +

p
m. Since�p

N �m+
p
m
�2
= N + 2

p
m
p
N �m > N , we �nd

that sZ (m; 0) >
p
N . The other extremum sZ (m; 1) =

�
�p
N �m�

p
m
�
is smaller than sZ (m; 1) < 0 <

p
N .

Since y is a continuous real variable and sZ (m; y) is monoto-
nously decreasing in y, there must exist, for each integer
m 2 [1; N2 ), a y

� 2 (0; 1) for which sZ (m; y�) =
p
N . In

summary, we have demonstrated the following Theorem:
Theorem 1: If the graph G is connected, then the number

sZ of elements in the orthogonal matrix Z of the Laplacian of
the graph G equals sZ =

p
N . The converse, �if sZ =

p
N ,

then the graph G is connected� is not always true.


