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Abstract

Cascading failures are one of the main reasons for large scale blackouts in power trans-
mission grids. Secure electrical power supply requires, together with careful operation,
a robust design of the electrical power grid topology. Currently, the impact of the topol-
ogy on grid robustness is mainly assessed by purely topological approaches, that fail to
capture the essence of electric power flow. This paper proposes a metric, the effective
graph resistance, to relate the topology of a power grid to its robustness against cascad-
ing failures by deliberate attacks, while also taking the fundamental characteristics of
the electric power grid into account such as power flow allocation according to Kirchoff
Laws. Experimental verification on synthetic power systems shows that the proposed
metric reflects the grid robustness accurately. The proposed metric is used to optimize
a grid topology for a higher level of robustness. To demonstrate its applicability, the
metric is applied on the IEEE 118 bus power system to improve its robustness against
cascading failures.

1. Introduction

Electric power is indispensable to modern societies. Security and availability of
power supply is crucial. Disruption of power delivery systems has severe effects on
the public order and substantial economic cost for society [1]. The safe operation
of the power grid greatly reduces the risk of large-scale blackouts. Many countries,
however, suffer from catastrophic blackouts paralysing daily life [2, 3]. Analysis of
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international blackout data reveals that the probability distribution of the blackout sizes
decreases with the size of the blackout in an approximate power law regime [4] with
an exponent between −1 and −2, i.e. doubling the blackout size approximately halves
its probability suggesting large scale blackouts are more likely than expected.

Cascading failures are the consequence of the collective dynamics of the complex
power grid. Large scale cascades are typically due to propagation of a local failure into
the global network. Consequently, analysing and mitigating cascading failures requires
a system level approach. Recent advances in the field of network science [5, 6, 7, 8, 9]
reveal the promising potential of complex networks theory to investigate power grids
vulnerability at a system level.

This paper considers the vulnerability of a system as a sensitivity to threats (i.e.
malicious attacks) and disturbances (e.g. random failures) that possibly limit the abil-
ity of the system to accomplish its tasks, and provide the intended services. As the
polar opposite of vulnerability, robustness refers to the ability of a system to avoid
malfunctioning when a fraction of its elements fail [10].

The operative state (e.g. loading level and power flow distribution), and structural
aspects of a power grid (e.g. type of buses and their interconnection), together with
the design choices of engineering systems (e.g. the protection systems, automatic con-
trols, and towers and insulators) determine the robustness against cascading failures
in a power grid. Enhancing the robustness of a power grid requires a careful assess-
ment of engineering system design choices and optimization of the operative state and
the topology of the grid. The operative state of a power grid continuously changes
while the topology remains mainly unchanged. Optimization of the operative state of a
power grid is a short-term optimization problem and requires a dynamic optimization
approach [11, 12, 13]. On the other hand, optimization of the topology is a long-term
optimization problem and requires investigating the impact of the grid topology on
cascading failures. This paper focuses on the optimization of the topology, and in-
vestigates the relationship between a power grid topology and its robustness against
cascading failures.

One way to analyse the impact of a power grid topology on the cascading effect
is investigating the relationship between the robustness level against cascading failures
and the general network properties in models of power grids. The electric power grid
has small-world characteristics [6, 14]. A small average shortest path length (together
with high clustering coefficient [15]) is one of the key characteristics of the small-
world phenomenon. In small-world networks, the average shortest path length might
dominate the network dynamics including, for example disease spreading [14]. These
studies/results motivate power system researchers to investigate the impact of average
shortest path length on the cascading failures robustness in power grids [14, 16]. They
deploy a purely topological approach; assume that electric power behaves as a discrete
data packet and follows the shortest or the most efficient path between two nodes.
Relying on this assumption, the average shortest path length is determined, and its
impact on the network robustness is investigated. However, this purely topological
approach does not comply with the fundamental characteristics of power grids. Electric
power obeys the laws of Kirchoff and flows through all available paths rather than
following a distinct path (e.g. shortest path). Therefore, the notion of distance in
power grids needs to be tailored based on power systems fundamentals. This paper
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proposes the effective resistance as a measure of electrical path length between two
nodes, and the effective graph resistance as a metric for electrical average path length
of a power grid. The effective graph resistance [15] relates to the impact of the topology
on cascading failure robustness while accounting for the fundamental properties of
power grids such as power flow distribution through the grid according to Kirchoff
Laws.

2. Dynamic Model of Cascading Failures in Power Grids

A power grid is a three-layered complex interconnected network consisting of gen-
eration, transmission, and distribution parts. Electric power is shipped from the genera-
tion buses to distribution substations through the transmission buses, all interconnected
by transmission lines. Electric power flows in a grid according to Kirchoff’s laws. Ac-
cordingly, impedances, voltage levels at each individual power station, voltage phase
differences between power stations and loads at terminal stations control the power
flow in the grid. AC power flow equations are non-linear equations that approximate
the flows of both active and reactive powers. DC load flow equations are a linearised
version of the AC power flow equations considering only flow of active power [17].
DC power flow analysis introduces an average line flow error up to 5% while it is 7
to 10 times faster than AC load flow model [17]. Following Ref. [18, 19, 20, 21], this
paper deploys DC load flow analysis to estimate the flow values across the network.

The maximum capacity (i.e. flow limit) of a line is defined as the maximum power
flow that can be afforded by the line. The flow limit of a transmission line is imposed by
thermal, stability or voltage drop constraints [22]. In line with other recent studies [23,
24, 25, 26, 27, 28], this paper assumes that the maximum capacity of a line relates to
its base (i.e. initial) load as follows:

Ci = αiLi(0) (1)

where Ci is the maximum capacity, Li(0) is the base load, and αi [23] is the tolerance
parameter of line i. In a power grid, each line has a relay protecting it from permanent
damage due to e.g. excessive flows. For instance, in case of overloading, an over-
current relay [29] notifies a circuit breaker to trip a line, when the current of the line
remains exceeding its rated limit (i.e. maximum capacity) for a period of time, to
avoid permanent damage of the line. For the sake of simplicity, this paper assumes a
deterministic model for the line tripping mechanism, i.e. a circuit breaker for a line
trips at the moment the flow of the line exceeds its rated limit. 2

An initial outage of a component changes the balance of the power flow distribution
over the grid and causes a redistribution of the power flow over the network. This
dynamic response of the system to this triggering event might overload other parts in
the network. The protection mechanism trips these newly overloaded components, and
the power flow is again redistributed potentially resulting in new overloads. In case

2While the over-current relays are not the only relays that are used in the power transmission grid, for the
sake of simplicity, this paper models the other type of relaying mechanisms (e.g. distance and differential
protection) as over-current relays.
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of islanding, cascading failures continue in each island in which generators or loads
are shed respectively to attain a power balance. The cascade of failures continues until
no more components are overloaded. After the cascade subsides, the robustness of the
grid against cascading failures is quantified in terms of the fraction of the served power
demand (DS) after the cascading failures.

3. Effective Graph Resistance in Electric Power Grids

This section explains the relevant basic concepts from complex networks theory,
presents the effective graph resistance, and elaborates on how it is computed in electric
power grids.

3.1. Complex networks preliminaries
A network G(N ,L) consisting of a set N of N nodes and a set of L of L links,

can fully be represented by its adjacency matrix A. The adjacency matrix of a simple,
unweighted graph G(N ,L) is anN×N symmetric matrix reflecting the interconnection
of the nodes in the graph: aij = 0 indicates that there is no edge, otherwise aij = 1. In
case of a weighted graph, the network is represented by a weighted adjacency matrix
W where wij corresponds to the weight of the link between nodes i and j; a weight
can be a distance, cost, or delay.

The Laplacian matrix [15] Q is another way to fully characterize a graph, and is
defined as:

Q = ∆−A (2)

where ∆ is the diagonal matrix of the strengths of G: δi=
∑N
j wij . Hence, the Lapla-

cian can be constructed as follows:

Qij =


δi, if i = j.

−wij , if i 6= j and (i, j) ∈ L
0, otherwise.

(3)

A path Pij between pair of nodes i and j refers to the set of links connecting these
nodes. The path length l(Pij) is the sum of the weights of constituent edges in the
path Pij . The shortest path length l(P ∗ij) is the minimizer of l(Pij) over all Pij . The
average shortest path length lG of a network G is defined as:

lG =
1

N(N − 1)

∑
i 6=j∈G

l(P ∗ij) (4)

3.2. Effective graph resistance and its computation in electric power grids
The effective resistance [15] Rij between a pair of nodes i and j is the potential

difference between these nodes when a unit current is injected at node i and withdrawn
at node j. And the effective graph resistance RG is the sum of the individual effective
resistance between each pair of nodes in the network. Computation of the effective
graph resistance for a power grid necessitates information about the topology of the
grid (i.e. interconnection of nodes), and reactance (or susceptance [30]) values of the

4



transmission lines in the grid. The effective graph resistance can be computed in two
different ways: (a) by aggregating the effective resistances between each pair of nodes,
and (b) by the eigenvalues of the Laplacian matrix of the grid.

The required steps to compute the effective graph resistance based on pairwise ef-
fective resistances are (i) constructing the Laplacian matrix of the grid, (ii) determining
the generalised inverse of the Laplacian matrix, (iii) computing effective resistances
between each pair of nodes, and (iv) summing up the effective resistances.

The Laplacian matrix of a power grid Q reflects the interconnection of buses with
transmission lines. The weight wij corresponds to the susceptance (i.e. inverse of
reactance) value between nodes i and j. The Laplacian matrix constructed by the sus-
ceptance values is equivalent to the admittance matrix in the electrical power systems
theory.

The effective resistance Rij between any pair of nodes i and j is computed as:

Rij = Q+
ii − 2Q+

ij +Q+
jj (5)

where Q+ is the Moore-Penrose pseudo-inverse of the Q.
The effective graph resistance RG of a power network is then computed by sum-

ming up all the effective resistances between all pairs in a network.

RG =

N∑
i=1

N∑
j=i+1

Rij (6)

Another way to compute the effective graph resistance of a power grid requires
computation of the eigenvalues of the Laplacian matrix of the grid. This approach
requires summing the inverse of the eigenvalues:

RG = N

N−1∑
i=1

1

µi
(7)

where µi is the ith eigenvalue of the Laplacian matrix, and µ1 ≥ µ2 ≥ ... ≥ µN−1 ≥
µN . This methodology is computationally more efficient, but it does not give any
insight into the individual electrical path lengths between pair of buses.

4. Effective Graph Resistance as a Robustness Metric

Modelling power grid dynamics requires taking the power flow into account. In a
dynamic power grid model, electric power flows through multiple paths. This precludes
the existence of a distinct path (and subsequently the existence of the shortest path) be-
tween two nodes in a physical power grid. Yet, the concept of equivalent impedance
makes it possible to determine a distinct electrical path between two nodes by concep-
tually replacing the multiple paths between two nodes with a single equivalent path.
Fig. 1 illustrates the concept.

The concept of electrical path length makes it possible to construct the electrical
topology of a power grid. An electrical topology of a power grid shows the electrical
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Figure 1: The equivalent impedance transforms the multiple L paths between nodes A and B with
impedances Z1, Z2, .., ZL (on the left hand side) to a one single conceptual path with an impedance value
Zeq,AB (on the right hand side).

connections/path lengths (i.e. equivalent impedances) between buses, rather than the
physical connections as a physical topology does. In a power grid, the actual "dis-
tance" between two nodes is the electrical path length, and not the physical distance
(or number of lines). Accordingly, the electrical topology of a power grid governs the
network dynamics rather than the physical topology. Fig. 2 shows the physical and the
electrical topology of the Institute of Electrical and Electronics Engineers (IEEE) 30
buses power system [31].

The initial concepts of "electrical distance" are discussed by power system re-
searchers [32, 33, 34], and also by mathematicians as effective resistance [35, 36].
In a power grid, the effective resistance Rij between buses i and j equals the equiv-
alent impedance between these buses. Hence, in the electrical topology in Fig. 2, the
connections are the effective conductances (1/Rij) between each pair of nodes. The
effective graph resistance RG of a power grid G is an aggregate value of all effective
resistances between any pair of nodes in a grid (see Eq. 6).

The existence of parallel paths between two nodes in a physical power grid topol-
ogy, and a homogeneous distribution of their impedance values result in a smaller ef-
fective resistance between these two nodes (i.e. a stronger connection between these
nodes in the electrical topology). The number of parallel paths in the physical topology
refers to the number of redundant (backup) paths. In case of a failure in one of the paths
between two nodes, the power flow carried by the rendered path is distributed over the
backup paths. Therefore, a higher number of backup paths implies a more robust net-
work against cascading failures due to line overloads. On the other hand, a relatively
more homogeneous distribution of the impedance values results in a relatively more
homogeneous distribution of power flow over these parallel paths increasing the ro-
bustness of the power grid against cascading failures [11, 12]. Therefore, a power
grid with a relatively smaller effective graph resistance implies a relatively more robust
power grid with respect to cascading failures.
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Figure 2: The physical (left) and the electrical (right) topology of IEEE 30 power system. In the physical
topology the conductances, and in the electrical topology the equivalent conductances (i.e. 1/Zeq), are
used as weights for a better illustration. A relatively thicker and more visible line corresponds to a stronger
connection/a shorter electric path length (i.e. a smaller effective resistance), while a relatively thinner and less
visible line corresponds to a relatively weaker connection/ a larger electric path length (i.e. larger effective
resistance).

5. Effective Graph Resistance and Power Grid Robustness: Experimental Verifi-
cation

This section verifies the potential of effective graph resistance to anticipate the
cascading failures robustness of power networks. Experimental verification of the pro-
posed robustness metric requires (i) creating synthetic test systems, (ii) determining the
effective graph resistance of these synthetic test systems (i.e. theoretical results) and
their robustness levels by simulations (i.e. experimental results that are considered as
the ground truth), and (iii) quantifying the correlation between the theoretical results
and experimental results to assess whether the effective graph resistance anticipates the
power grid robustness with respect to cascading failures.

5.1. Test systems

The data required for the metric verification analysis includes the topology of a
power grid (i.e. interconnection of buses with lines), reactance values of transmission
lines, the types buses and their generation capacity and load values. Since the IEEE
power systems provide all these data, they are considered as the reference systems and
additional synthetic test systems are created based on them.

These synthetic test systems are generated with exactly the same properties as the
reference IEEE test system (e.g. type and number of buses/lines, demand/generation
capacity values, and the topology) except for the impedance values of certain randomly
chosen lines. In each test system, all of the parameters that have an impact on the ro-
bustness (e.g. topology, generation/loading profile, and loading level) are fixed, except
for the effective graph resistance and the power flow distribution over the grid that
relates to the robustness. This assures that the differences in the robustness levels of
these test systems is due to the change in the effective graph resistance of these grids,
thus making it possible to assess the impact of the effective graph resistance on the grid
robustness.
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To vary effective graph resistance, an arbitrary number of the links of the reference
IEEE test systems are randomly chosen and the reactance values of these transmission
lines are increased. For example, when creating a synthetic test system based on the
IEEE 118 power system [31], e.g. 4 transmission lines are randomly chosen: l1, l2,
l3, l4. The reactance values of these lines (i.e. x1, x2, x3, x4) are doubled and a new
synthetic test system is created with the new reactance values: 2x1, 2x2, 2x3, 2x4 for
lines l1, l2, l3, l4 respectively.

The new synthetic test system has an increasedRG as the effective graph resistance
is a monotonic increasing function of the individual reactance values in a network [36].
It also has a different robustness level against cascading failures because the manipu-
lated impedances affect the power flow distribution in the networks [11, 12].

A second synthetic test system is created from the reference IEEE 118 power sys-
tem by increasing the reactance values of the same lines l1, l2, l3, l4 by a factor of three
resulting in the impedance values of 3x1, 3x2, 3x3, 3x4, respectively. The additional
synthetic test systems are created following the same procedure.

5.2. Robustness levels by effective graph resistance and by simulations

The effective graph resistance is proposed in this paper to quantify the theoretical
robustness levels of the test systems against cascading failures. The RG of the test
systems is compared to the simulation-based robustness levels to verify that RG antic-
ipates the grid robustness. The computation of RG requires data about the admittance
matrix of the systems (i.e. reactance values of the transmission lines and the topology
of the grid). The effective graph resistance of each test system is calculated by Eq. 5
and Eq. 6 in Sec. 3. The experimental robustness levels of created synthetic power
grids are determined using simulations. MATCASC [37] (a MATLAB-based tool im-
plementing cascading failure simulations in power grids) is used to simulate cascading
failures and to quantify the grid robustness. Cascading failures by targeted attacks are
simulated for different values of tolerance parameter α (i.e. for different loading lev-
els). DS metric is used to quantify the robustness of the test systems after the cascades
subsides.

This paper uses an attack strategy based on the electrical node significance met-
ric [11, 12]. The electrical node significance is a contextual node centrality measure,
specifically designed for power grids. The electrical node significance δ of a node i is
defined as the amount of power distributed by node i, normalized by the total amount
of the power that is distributed in the entire grid:

δi =
Pi∑N
j=1 Pj

(8)

where Pi stands for total power distributed by node i while N refers to number of
nodes in the network. This paper attacks a power grid by targeting the most heavily
loaded outgoing link from the node with the highest electrical node significance in the
network. Removal of this link most likely results in the largest cascading failure in the
power network [38].

Assessing the robustness of a power grid against cascading failures by targeted
attacks for an interval of tolerance parameters [αmin, αmax] results in the robustness
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Figure 3: The robustness curve for the IEEE 118 test system

curve of the grid. For example, Fig. 3 shows the robustness curve for the IEEE 118
power system [31] obtained for [αmin=1, αmax=5] subdivided with ∆α=0.05. The
robustness curve in Fig. 3 suggests that, when the network is loaded by 20% (i.e. α=5),
an attack results in the loss of almost 10% of the total demand. However, an attack
when α=1.3 (i.e. loading level ' 77%) results in collapse of the network and only
20% of the total demand can be satisfied.

Traditionally, power grid researchers focus on the robustness of a grid for a specific
tolerance level of the grid. However, this paper considers the robustness of a power
grid over the whole spectrum of tolerance levels (i.e. loading levels), and defines math-
ematically the normalized area r below the robustness curve as an empirical metric that
quantifies the power grid robustness against cascading failures. The normalized area
below a robustness curve is computed by a Riemann sum [39]:

r =
1

(αmax − αmin)

∑
i∈d

DS(αi)∆α (9)

where DS(αi) is the DS after a cascading failure is triggered by an attack when the
tolerance of the network is αi, and d is the size of the set of tolerance parameters at
which the robustness levels are determined. Because the maximum value of DS is
1, (αmax − αmin) refers to the maximum possible area below the robustness curve.
Consequently, the factor 1/(αmax − αmin) in Eq. 9 normalizes the area below the
robustness curve ensuring that r has a value between 0 and 1. Evaluation of Eq. 9 for
the robustness curve of a grid results in the experimental robustness level of the grid
with respect to cascading failures. On the other hand, the vulnerability of the grid is
the complementary of the robustness of the grid and defined as:

v = 1− r (10)

where v is the measure of vulnerability of the system, also having a value between 0
and 1.
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Figure 4: The robustness curves for the IEEE 30 and first 3 synthetic test systems, and the corresponding
robustness (i.e. r) values. The test systems have their effective graph resistances in an ascending order, while
their robustness levels are step by step decreasing.

5.3. Assessing the effectiveness of the effective graph resistance in anticipating power
grid robustness

To gain more insight into the impact ofRG on the grid robustness, first a qualitative
analysis is performed for a relatively small set of test systems. The IEEE 30 power
system (see Fig. 2) is considered as a reference system. 4 lines are chosen randomly:
l2 (connecting nodes 1 and 3), l14 (connecting nodes 9 and 10), l38 (connecting nodes
27 and 30), l41 (connecting nodes 6 and 28), and based on the methodology explained
in Sec. 5.1, three additional test systems are created. The robustness of these systems
are determined by RG and by r. Table 1 provides the RG and r values while Fig. 4
shows the robustness curves of these test systems.

The effective graph resistance is a monotonic increasing function of the individual

Table 1: Effective graph resistance (RG) and simulation-based robustness levels (r) of IEEE 30 and 3
synthetic test systems

RG r(%)
IEEE 30 151.86 72.66
Synthetic grid 1 162.71 68.51
Synthetic grid 2 169.43 67.18
Synthetic grid 3 174.07 66.96
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Figure 5: Experimental verification of the effective graph resistance for IEEE 30 test system. For 100
synthetic test systems, on the left hand side the effective graph resistance and the vulnerability values are
plotted. On the right hand side a scatter plot visualizes the correlation between effective graph resistance
and system vulnerability. Results show that the effective graph resistance captures the system vulnerability
accurately.

impedance (consisting of resistance and reactance) values in the grid [36]. Accordingly,
in Table 1, RG increases as a result of the increase of individual reactance values. This
indicates that the typical average electrical path length between the buses in the syn-
thetic grids is increasing incrementally making these grids relatively loosely coupled.
On the other hand, as a result of the increase of reactance values in these synthetic
grids, r becomes step by step smaller: synthetic grid I is more robust compared to
synthetic grid II, synthetic grid II is more robust compared to synthetic grid III, and
so forth. Hence, the theoretical results (i.e. RG) are evidently in line with the simula-
tion results, and suggest that increasing the effective graph resistance of the IEEE 30
power system makes it less robust (i.e. more vulnerable) against cascading failures by
targeted attacks. Fig. 4 visualizes the impact of RG on grid robustness: an increase in
RG makes the power grid robustness smaller.

A statistically robust quantitative assessment of the impact of the effective graph
resistance on the power grid robustness requires the robustness analysis for a larger set
of networks. Accordingly, the small set of 4 test systems (see Table 1) is expanded
to a set of 100 test systems. The effective graph resistances and the empirical robust-
ness levels (i.e. r) of these networks are determined. The correlation level between
these theoretical and experimental robustness levels is quantified: the linear correla-
tion coefficient between RG and r is over -90%. This nearly perfect anti-correlation
level suggests that, in the deployed model, the effective graph resistance anticipates
the power grid robustness with respect to cascading failures accurately. Fig. 5 plots
RG, v, and scatter diagram of RG and v. Results in Fig. 5 visualizes how the effec-
tive graph resistance captures the power grid robustness. The vulnerability is plotted
rather than the experimental robustness r for better illustration of coherence between
the theoretical and experimental results.

Alternating the reactance values in a grid causes a different power flow distribution
in the grid and, in turn, results in a different level of robustness against cascading
failures [11, 12]. Fig. 5 shows that the vulnerability v reflects the variations in RG of
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Figure 6: Experimental verification of the effective graph resistance for IEEE 118 test system. For 100
synthetic test systems, the effective graph resistance (on the left hand side), and the vulnerability values (on
the right hand side) are plotted.

the power grids accurately: a steep increase in the grid effective graph resistance results
in a steep increase in the grid vulnerability (i.e. steep drop in grid robustness ), while a
slight increase in the grid effective graph resistance causes a slight increase in the grid
vulnerability (i.e. a slight drop in the grid robustness).

To investigate the validity of the impact of RG on power grid robustness, the ro-
bustness analysis is performed for the larger IEEE 118 power systems. Again four lines
are randomly chosen: l31 (connecting buses 23 to 25), l35 (connecting buses 28 to 29),
l93 (connecting buses 59 to 63), and l175 (connecting buses 109 to 110). Furthermore,
99 additional test systems are created. For these test systems, RG is computed and the
experimental robustness levels are obtained by r (and grid vulnerability by v). Fig. 6
shows the RG and v values for the 100 test systems. The correlation level between RG
and r resides again over -90%.

The experimental results (see Fig. 5 and Fig. 6) show that the effective graph re-
sistance captures the robustness of the IEEE power systems accurately and suggests
that an increased effective graph resistance results in a less robust power grid against
cascading failures, as proposed in Sec. 4.

6. Use Case: Application for Power Grids

The aptitude of effective graph resistance to relate a power grid topology to its
robustness can be exploited in different ways, including designing robust networks
from scratch and identifying critical components in a power grid. Furthermore RG
also acts as a measure based on which a grid topology is optimized to maximize the
grid robustness. The next section focusses on optimization of the IEEE 118 power
system topology for a higher level of robustness against cascading failures.
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6.1. Upgrading IEEE 118 power system to improve grid robustness

As a response to blackouts, additional transmission lines are placed to increase
the power grid robustness. Determining the right pair of buses to connect in order to
maximize the grid robustness is the challenge3. A solution to this problem requires
(i) determining all possible additional transmission lines (i.e. candidate transmission
lines), and (ii) assessing the impact of each candidate transmission line on the effective
graph resistance.

For a grid consisting of N buses and L transmission lines, an additional line can be
placed between any unconnected pair of nodes. Therefore, there are in total N(N−1)

2 −
L number of lines that can be added to an existing power grid.

To assess the impact of an additional line on the effective graph resistance (i.e. on
the grid robustness), this section deploys an analogous approach to the one given in [40,
41]: the optimum location for an additional line is determined by assessing its relative
change on the effective graph resistance value of the original power grid. Because
the effective graph resistance is a monotonic decreasing function of the number of
lines [36] in a grid, adding a transmission line to an existing grid decreases the effective
graph resistance of the grid. Therefore, the optimum location of an additional line is
determined based on the relative decrease in RG that is caused by adding the line l:

∆RlG =
RG −RG+l

RG
(11)

where G, RG(G + l) is the effective graph resistance of the improved grid, and ∆RlG
is the relative decrease in the effective graph resistance of G as a result of adding line
l.

The IEEE 118 power system is considered as a test case and the optimum location
for an additional line to upgrade the power system is investigated. The IEEE 118 test
system has 118 buses and 186 transmission lines. Hence, there are 6724 possible lines
to be added. The reactance value of a candidate transmission line is assumed to be
the average of all transmission lines in the IEEE 118 test system. For each of these
candidate lines, Eq. 11 is evaluated and its impact on the effective graph resistance is
determined. From these 6724 lines, Table 2 shows the top 10 most influential transmis-
sion lines to be added to IEEE 118 power system, while Fig. 7 plots the lines that have
an impact higher than 0.7%.

The results in Table 2 and Fig. 7 can be used as starting point for an economic anal-
ysis. Since the impact of adding a line is not very different for the top ten candidates
(see Table 2 and Fig. 7) a cost function can be used to determine which of these lines
provides a significant increase in grid robustness at an acceptable or minimal cost.

Table 2 shows that the largest decrease in the effective graph resistance is achieved
by adding a transmission line between nodes 111 and 117 (line ID 73 in Fig. 7). Placing
a line between these nodes results in a decrease of nearly 0.79% in the effective graph
resistance of the original power system.

3This section focuses on maximizing the grid robustness rather than minimizing the economic cost of
placing a transmission line.
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Figure 7: Relative decrease in the effective graph resistance as a result of adding a line for IEEE 118 test case.
From 6724 total lines, 74 lines whose addition to IEEE 118 buses power system results in a RG decrease of
0.7% or higher.

Table 2: The top 10 most influential lines to add in IEEE 118 system
Line ID ∆RlG(%)
l111−117 0.788
l112−117 0.783
l1−111 0.774
l1−112 0.769
l2−111 0.768
l3−111 0.767
l87−117 0.765
l2−112 0.763
l3−112 0.761
l110−117 0.760
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Figure 8: Robustness curves of IEEE 118 and improved IEEE 118 power systems. The difference (i.e.
robustness improvement) is highlighted.

To assess the impact of placement of the additional line l111−117 on the grid ro-
bustness, the robustness curve of the improved topology, and its robustness r are de-
termined. The improved grid has a robustness r=0.6570 which is an increase by 6.7%
compared to the original grid robustness (i.e. 0.6182). Fig. 8 plots the robustness curves
of both topologies, and highlights the improvement in the grid robustness (shaded area
in grey in Fig. 8).

7. Discussion and Conclusion

This paper proposes the effective graph resistance RG as a metric to assess the
impact of the power grid topology G on the robustness against cascading failures due
to line overloads by targeted attacks. The effective graph resistance takes the number
of backup paths and their ability to accommodate power flows into account to quantify
power grid robustness. The experimental verification on IEEE and synthetic power sys-
tems demonstrates the ability of RG to estimate the grid robustness against cascading
line failures. Experimental results from simulations show that increasing the effec-
tive graph resistance of synthetic power systems results in decreased grid robustness
against cascading failures by targeted attacks. The proposed metric is used to opti-
mize the topology of the IEEE 118 power system to improve its robustness. Results
show that adding a single line to IEEE 118 power system based on the effective graph
resistance analysis improves the grid robustness by 6.7%.
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