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Abstract

Continuous-time Markov processes are governed by the Chapman-Kolmogorov differential equa-

tion. We show that replacing the standard time derivative of the governing equation with a Caputo

fractional derivative of order 0 < α < 1 leads to a fractional differential equation whose solu-

tion can describe the state probabilities of a class of non-Markovian stochastic process. We show

that the same state probabilities also solve a system of equations which describe semi-Markov

processes in which the sojourn times follow a Mittag-Leffler distribution, contrasting the usual

Markov processes with exponentially distributed sojourn times. We apply the fractional framework

to the ε-SIS epidemic process on any contact graph and we propose a novel microscopic epidemic

description in which infection and curing events follow a Mittag-Leffler distribution and are not in-

dependent. We analytically prove that the novel description exactly solves the fractional extension

of the Chapman-Kolmogorov differential equation and we provide an extensive study of how the

dependence between the events strongly affects the dynamic of the spreading process. We conclude

verifying the proposed framework with Monte Carlo simulations.

1 Introduction

Since real-world epidemics are very likely characterized by non-exponential infections and curings [1–3],

non-Markovian models [4–7] are expected to describe the real epidemic processes better. In order to

account for memory in Markovian stochastic processes, several authors [8–10] have proposed to replace

the standard differential operator in the equations which define the evolution of the probability state

vector of a Markov process, with integral operators which “sum” over the past and incorporate memory

effects. In this paper, we focus on the well-known Caputo fractional derivative [11], an operator which

generalizes the notion of standard derivative to non-integer orders and that can be written as the

convolution of the standard differential operator with a power-law kernel which incorporates all the

times up to the present in the evolution of the process. The main idea is therefore to employ the

Caputo fractional derivative to generalize the equations describing Markovian stochastic processes to

a wider framework, and then to apply the fractional formalism to the modelling of epidemic processes

on networks.
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lands; email : m.d.dalessandro@tudelft.nl
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Compared to other works [9, 10, 12] on the fractional derivative to model epidemic spreading pro-

cesses, we provide the following contributions: (I) we discuss in depth how the Caputo fractional

derivative affects the theory of Markov processes; (II) we extend the N-Intertwined Mean-Field Ap-

proximation (NIMFA) [13] of the ε-SIS process on networks to a fractional setting; (III) we devise a

novel microscopic description that “physically” interprets the fractional extension of Markovian equa-

tions in terms of the interactions between curing and infection processes on any fixed contact graph;

(IV) we discuss the limitations of a fractional extension of Markov theory to model a realistic epidemic.

In Section 2, we briefly review the theory of Caputo-type differential equations, laying a theoretical

baseline for the subsequent results. In Section 3, we show which restrictions must be imposed when

applying the Caputo fractional derivative to stochastic processes and which are the consequences on

the physical dimensions of the equations. The general process defined by the fractional extension of

the Markovian equations is then presented and the deep relation with semi-Markov processes and

their equations is disclosed. Section 4 applies the devised framework to ε-SIS epidemic processes on

networks and the well-known N-Intertwined Mean-Field Approximation (NIMFA) is also translated

to the fractional setting. Finally, Section 5 defines a novel microscopic epidemic process, whose state

probabilities solve the fractional equations. We analytically prove the validity of the model and we

confirm with Monte Carlo simulations the new theory.

2 Caputo-type fractional differential equations

2.1 Definition

The Caputo fractional derivative can be defined as [8, 11,14]:

Dα
p;mf(t) =

dαf(z)

dzα

∣∣∣∣
z=t

=
1

Γ(m− α)

∫ t

p

f (m)(x)

(t− x)α+1−m
dx for Re(α) ≤ m (1)

where the integer m bounds the fractional order α as: 0 < Re(α) ≤ m. The parameter p is almost

always chosen equal to 0. The integral in (1) is an extension of the standard derivative to the non-

integer order α. Indeed, for α = 1, the definition (1) reduces to D1
0;1f(t) = df(t)

dt . Definition (1)

naturally defines differential equations in which the order α of the derivatives can be non-integer and

even complex

Dα
0;my(t) = g(t, y(t)), (2)

with initial conditions y(n)(0) = y
(n)
0 , for n = 0, 1, ...,m−1. We choose the Caputo fractional derivative

because the most important properties in the classical theory of complex functions, such as Peano’s

existence theorem and the Picard–Lindelöf uniqueness theorem, remain valid [14] for (1). Moreover,

(1) is a natural extension of first order differential equations as the initial condition employed in the

standard case can also be employed in the fractional setting.

2.2 Solution of the linear problem

For a linear fractional differential equation where g(t, y(t)) = ay(t) in (2), the solution can be expressed

in closed form [14, Theorem 4]. Assuming α ∈ R, the power series expansion of the Mittag-Leffler
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function [15],

Eα,b(z) =
∞∑
k=0

zk

Γ(b+ αk)
, (3)

converges for all complex numbers z if α > 0, implying that the Mittag-Leffler function Eα,b(z) is an

entire function. In particular, its one parameter version with b = 1 is written as Eα,1(z) = Eα(z).

Given the N -dimensional real vector sα(t) and the real N ×N matrix Q, the solution of the fractional

differential equation

Dα
0;msα(t) = −Qsα(t) 0 < α < m, (4)

with given initial conditions {s(n)α (0)}m−1<n≤m, is [8, Appendix C]

sα(t) =

m−1∑
n=0

tnEα,n+1(−Qtα)s(n)α (0), (5)

where Dα
0;m is the Caputo fractional derivative (1) with p = 0 and m > 0.

3 Fractional derivative in continuous-time Markov processes

3.1 The fractional equation

Given a continuous-time Markov process {M(t), t ≥ 0} 1 with infinitesimal generator−Q, the Chapman-

Kolmogorov equation, which describes the evolution of the state probability vector s(t) of the process,

is
d

dt
s(t) = −Qs(t). (6)

Given the initial condition s(0), the Chapman-Kolmogorov equation (6) is solved by

s(t) = e−Qts(0). (7)

As in [8, sec III.A], we replace the standard derivative in the Chapman-Kolmogorov equation (6) of

the continuous-time Markov process M(t), with the Caputo fractional derivative (1) for p = 0, m = 1

and 0 < α < 1. We obtain the fractional differential equation (4), whose solution (5) for m = 1 can

describe the evolution of the state probability vector sα(t) of a process which depends on the fractional

order α. The integral operator in (1) incorporates all the previous times instants up to time 0. The

evolution of a process, defined by (4), formally depends upon its past (see also figure 1 in [16]).

The dimensions of the physical quantities in (4) are discussed in section 3.1.1 and the dimensionless

fractional Chapman-Kolmogorov equation (8) is then proposed. The choice of the parameter p = 0

simplifies in (1) the fractional differential equation (4) with a valid initial condition in t = 0, while for

the choice of m, which implies 0 < α ≤ m for the fractional order α, a detailed analysis is presented

in sec. 3.1.2.

1For a review of the basic definitions of Markov theory see Appendix A.
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3.1.1 Dimensional analysis

The dimension of a physical quantity x is denoted by [x]. For example, if t is a physical quantity of

time, then [t] = T, where T is the symbol for the physical dimension of time in the SI standard. The

elements qij of the infinitesimal generator Q in (6), have dimension [qij ] = T−1 and the fractional

derivative of a dimensionless function c(t) has dimension [Dα
0 c(t)] = T−α, because in the defining

integral (1) the product between all the time variables leads to the power −α regardless of the value

of m. Therefore, we define a rescaled dimensionless time [ t̃ ] = 1 and a rescaled dimensionless matrix

[ Q̃ ] = 1, and from (4) with m = 1 we write the dimensionless2 fractional Chapman-Kolmogorov

equation:

Dα
0 sα(t̃) = −Q̃sα(t̃), 0 < α < 1, (8)

which will be the main equation employed throughout this work. The solution of (8) with initial

condition sα(0) is the vector sα(t̃) = Eα(−Q̃t̃α)sα(0). In the following we will thus work in the

dimensionless framework whenever α ̸= 1.

In [8, IV.A] it is alternatively proposed to replace Q with Qα to have dimensional coherence in

equation (4). If the matrix Q is diagonalizable, then it can be decomposed as [17, Chapter 4]:

Q =
N∑
k=1

µkxky
T
k , (9)

where µk is the eigenvalue belonging to the right-eigenvector xk and the left-eigenvector yk of Q. The

power α ∈ (0, 1) of Q becomes thus

Qα =
N∑
k=1

µα
kxky

T
k .

In our case of interest, −Q is the infinitesimal generator of a continuous-time Markov process and thus

the eigenvalues µk of Q are all non-negative [18, Chapter 10]. The power α ∈ (0, 1) of the eigenvalues

“compresses” the eigenvalues greater than 1 and “dilates” the eigenvalues smaller than 1. Therefore,

the structure of the matrix Q is lost, because the relative distance between the eigenvalues is modified

in a non-homogeneous way. For example, if −Q is an infinitesimal generator of a birth-death process

which is known to be a tridiagonal matrix [18, sec. 11.3], the power α ∈ (0, 1) of the matrix Q, namely

Qα, is a full matrix with all elements different from zero. We denote the elements of Qα with (Qα)ji

and Figure 1 draws the Markov graph of the process defined by −Qα for a birth-death process with

a population of maximum N = 3 individuals.

2The symbol tilde˜denotes dimensionless quantities.
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Figure 1: Graph of the possible transitions of the process defined by −Qα when −Q generates a

birth-death process with a population of N = 3. In red the new transitions appearing for Qα, in black

the ones already present for Q.

Figure 1 depicts in black the transition rates that are already present in the Markov graph related

to Q. The red arcs are the newly appearing transitions when employing Qα and show that the process

defined by −Qα allows any possible transition. The process itself is still Markovian because uTQα = 0

(the zero eigenvalue is not affected by the power operation), where uT is the all-one vector, but the

process is different from the Markov process defined by Q. The new transition rates of the Qα process

will be the elements of minus (Qα)ij and the embedded Markov chain will include the transitions

depicted in Figure 1. Therefore, if −Q is the infinitesimal generator of a Markov process, employing

−Qα in (4) leads to a fractional equation, which does not describe the fractional extension of the

process defined by −Q.

3.1.2 Probability theory restrictions

In section 3.1.1, we have proposed the dimensionless fractional Chapman-Kolmogorov equation (8)

choosing m = 1 in (4) and therefore restricting the fractional order of the Caputo derivative (1) to

be 0 < α < 1. Usually, the choice m = 1 is not explicitly justified but in this section we show why

allowing m ≥ 2 and thus α > 1 creates problems when the fractional equation (4) is employed in the

context of stochastic processes.

For stochastic processes, the vector sα(t̃) must satisfy the first axiom of probability [18, sec. 2.1],

which implies that uT sα(t̃) = 1 for all times t̃. Multiplying the general solution (5) by the all-one

vector uT , we obtain

uT sα(t̃) =

m−1∑
n=0

t̃nuTEα,n+1(−Q̃t̃α)s(n)α (0),
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and employing the Mittag-Leffler Taylor series (3) we write

uT sα(t̃) =
m−1∑
n=0

t̃n
( ∞∑

k=0

(−t̃α)k

Γ(n+ 1 + αk)
uT Q̃k

)
s(n)α (0)

=

m−1∑
n=0

t̃n
(
uT I

1

n!
+

∞∑
k=1

(−t̃α)k

Γ(n+ 1 + αk)
uT Q̃k

)
s(n)α (0).

Since uT Q̃ = 0 for any infinitesimal generator Q̃ of a Markov process [18, sec. 10.2.1], the general

solution (5) of (4) must obey

uT sα(t̃) =
m−1∑
n=0

t̃n

n!
uT s(n)α (0) = 1. (10)

Since uT s
(0)
α (0) = uT sα(0) = 1, equation (10) reduces to

m−1∑
n=1

t̃n

n!
uT s(n)α (0) = 0. (11)

Given that (11) must hold for all t̃, it follows by equating corresponding powers of t̃, that

uT s(n)α (0) = 0 n = 1, 2, ...,m− 1. (12)

Hence, s
(n)
α (0) for n = 1, 2, ...,m−1 must be orthogonal to the all-one vector u, which is the eigenvector

of Q̃ belonging to the eigenvalue µ = 0. The conditions uT sα(t̃) = 1 and (12) are necessary for the

general solution (5) to describe a probability vector at any time t̃.

In Appendix C, we show with a counter-example that, when m > 1, conditions uT sα(t̃) = 1 and

(12) are not sufficient for the solution (5) to describe a probability vector at any time t̃. Therefore,

the replacement of the standard derivative with the fractional equation needs the restriction to m = 1

and in the sequel we will thus confine ourselves to the case m = 1 in (4), which corresponds to (8)

with fractional order 0 < α < 1.

3.2 The general process described by the fractional Chapman-Kolmogorov equa-

tion

The solution of the fractional Chapman-Kolmogorov equation (8) with sα(0) as initial condition is

given by (5) with m = 1:

sα(t̃) = Eα(−Q̃t̃α)sα(0). (13)

In Section 3.1.2, we have shown that when α ∈ (0, 1) the property uT sα(t̃) = 1 is satisfied. Moreover,

each component of sα(t̃) is positive at all times t̃ because (13) indicates that

(sα(t̃))j =
N∑
k=1

(Eα(−Q̃t̃α))jk(sα(0))k > 0, ∀j = 1, ..., N,

as all the matrix elements (Eα(−Q̃t̃α))jk are positive [15] and all the initial vector components (sα(0))k

are also positive. We can thus assume that sα(t̃) is the probability state vector of a stochastic process
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{Yα(t̃), t̃ ≥ 0} on the same state space S with N states of a Markov process generated by −Q̃. The

law of total probability indicates that

(sα(t̃))j = Pr[Yα(t̃) = j] =
N∑
l=1

(Eα(−Q̃t̃α))jl(sα(0))l.

It follows that the transition probability matrix of the process Yα(t̃) is equal to

Pα(t̃) = Eα(−Q̃t̃α), (14)

where each matrix element describes the conditional probability

(Pα(t̃))ji = Pr[Yα(t̃) = j|Yα(0) = i]. (15)

In Section 3.3 below, we prove that a matrix of the type of (14), where −Q̃ is an infinitesimal generator

of a Markov process, also satisfies the following system Dα
0Pα(t̃) = −Pα(t̃)Q̃

Dα
0Pα(t̃) = −Q̃Pα(t̃)

,

that generalizes classical Markov theory (α = 1) [18, Lemma 10.2.2]. The evolution of the state sα(t̃)

can thus be written as

sα(t̃) = Pα(t̃)sα(0).

Without any assumption on the process Yα(t̃), equation (8) only defines the state probabilities

(sα(t̃))j = Pr[Yα(t̃) = j] and the conditional probabilities (Pα(t̃))ji = Pr[Yα(t̃) = j|Yα(0) = i].

Equation (8) for α ∈ (0, 1) does not specify the dependence on the previous states, in contrast to the

Markov case (α = 1). Indeed [8, eq. (33)]:

Pr[Yα(t̃+ u) = j] =

N∑
k=1

N∑
m=1

Pr[Yα(t̃+ u) = j|{Yα(u) = k, Yα(0) = m}]× Pr[Yα(u) = k, Yα(0) = m]

(16)

manifests for 0 < α < 1 the general intricate dependence among process states at different times.

Hence, the joint probabilities Pr[Yα(t̃ + u) = j, Yα(t̃) = j] are not uniquely defined by the fractional

Chapman-Kolmogorov equation (8), while the single state vector probabilities (sα(t̃))j = Pr[Yα(t̃) = j]

are. The fractional Chapman-Kolmogorov equation (8) and its solution (13) define, in general, a class

of non-Markovian stochastic processes. Only in the Markovian case (α = 1), the Chapman Kolmogorov

equation completely defines both the joint and the single state vector probabilities [8]. From (16) we

also deduce that the distribution of the sojourn times of the process will certainly depend on the

history and will not even be guaranteed to stay functionally the same at all times.

3.3 Fractional equations in continuous-time semi-Markov processes

So far, we have merely replaced the standard derivative in the Chapman-Kolmogorov equation (6)

with the Caputo fractional one, resulting, after dimensional rescaling, in equation (8). A different

approach [19–21], would be to build a stochastic process, whose transition probabilities explicitly
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satisfy fractional differential equations. We use the notation in Appendix A to define a stationary

Markov process {M(t̃), t̃ ≥ 0} on the state space S with i = 1, ..., N states, which is generated by the

matrix −Q̃. Following [20], we consider a continuous-time semi-Markov process {Xα(t̃), t̃ ≥ 0} on the

same state space S, such that:

Xα(t̃) = Xn, Tn ≤ t̃ < Tn+1, T0 = 0, Tn =
n−1∑
k=0

Jk, n ∈ N (17)

where Jk is the sojourn time that the process spends in the state Xk to which the embedded Markov

chain has transitioned at step k. The time Tk is the total time elapsed from 0 to the k-th transition.

The embedded Markov chain transition probabilities are

Vji = Pr[Xn+1 = j|Xn = i] = − q̃ji
q̃ii

, ∀n ∈ N, i, j ∈ S (18)

and are exactly the same as the embedded Markov chain of the original Markov process M(t̃) (Ap-

pendix A), because the transition probabilities are built with the same infinitesimal generator −Q̃.

The sojourn times Jn in state i follow a general distribution Pr[Jn > t̃|Xn = i] = 1− Fi(t̃). Here, we

choose the Mittag-Leffler distribution

Fi(t̃) = 1− Eα(−q̃iit̃), i = 1, ..., N, t̃ > 0, (19)

rather than the exponential distribution that describes Markovian sojourn times, and we assume that

(19) is time-independent and functionally the same for each state i. Furthermore, we assume that the

sojourn time Jn, given that Xn = i, only depends on the state i and we define the sojourn time of i

with a variable τ̃i that represents the random time that the process remains in state i.

The extension of the Markov property (37) for the semi-Markov processXα(t̃) can thus be expressed

for integers k > 0 as

Pr[Xα(t̃+ τ) = j|Xα(τ) = i,Xα(u) = x(u), 0 ≤ u < τ, Tk = τ ]

= Pr[Xα(t̃+ τ) = j|Xα(τ) = i, Tk = τ ]. (20)

The process Xα(t̃) is called “semi-Markov”, because the probability in (20) to make a transition at

time t̃ + τ to another state j, given that at time τ the process made the k-th transition to i ̸= j,

does not depend on states before time τ and does not depend on k. We then define the transition

probabilities of the stationary process {Xα(t̃), t̃ ≥ 0} as

αP ji(t̃) : = Pr[Xα(t̃) = j|Xα(0) = i] =

= Pr[Xα(t̃+ τ) = j|Xα(τ) = i, Tk = τ ]. (21)

Given the time of the first jump J0, the law of total probability

Pr[X(t̃) = j|X(0) = i] = Pr[X(t̃) = j, J0 > t|X(0) = i]+

+ Pr[X(t̃) = j, J0 ≤ t|X(0) = i],
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leads to the so-called renewal equation [18, Theorem 10.5.1]:

αP ji(t̃) = Pr[J0 > t̃|X(0) = i]δji +
N∑
l=1

∫ t̃

0
αP jl(t̃− s)Vlifi(s)ds =

= Pr[J0 > t̃|X(0) = i]δji −
N∑
l=1

∫ t̃

0
αP jl(t̃− s)

q̃li
q̃ii

fi(s)ds, (22)

where the quantity fi(s) is the probability density function of the sojourn time distribution Fi(t). The

system of equations (22) has been proven to be equivalent to the systems of forward and backward

fractional equations [20, Proposition 2.1]: Dα
0 αP ji(t̃) = −

∑N
l=1 αP jl(t̃)q̃li, αP ji(0) = δji

Dα
0 αP ji(t̃) = −

∑N
l=1 q̃jl αP li(t̃), αP ji(0) = δji

(23)

which, in matrix form, read  Dα
0 αP (t̃) = − αP (t̃)Q̃

Dα
0 αP (t̃) = −Q̃ αP (t̃)

The operator Dα
0 is the Caputo fractional derivative (1) with m = 1 and p = 0. In Appendix D we

solve the system of fractional forward equations (equivalent to the backward as shown in [20]), which

corresponds to the first equation in (23). We obtain that, for integers k > 0, the transition probability

matrix of the semi-Markov process Xα(t̃) is:

αP ji(t̃) = Pr[Xα(t̃) = j|Xα(0) = i] = Pr[Xα(t̃+ τ) = j|Xα(τ) = i, Tk = τ ] = (Eα(−Q̃t̃α))ji. (24)

3.3.1 Semi-Markov processes satisfy the fractional Chapman-Kolmogorov equation

Relation (24) indicates that the transition probability matrix of the semi-Markov process Xα(t̃) is

mathematically equivalent to the transition probability matrix (14) of the more general fractional

process Yα(t̃) described in Section 3.2. The main difference between the two conditional probability

distributions is that the semi-Markov transition probability matrix elements αP ji(t̃ + u), defined in

(21), describe the probability of the process Xα(t̃) transitioning from i to j in time t̃, conditioned on

the fact that the process has just transitioned in state i at time u ≥ 0. The general fractional process

transition probability matrix elements (Pα(t̃+ u))ji, defined in (15), describe instead the probability

of the process Yα(t̃) transitioning from i to j at time t̃+u, given that at time 0 the process was in state

i. Other than the stationarity, the general process Yα(t̃) is not assumed to satisfy the semi-Markov

property (20) and therefore the two matrices αP (t̃) and Pα(t̃), even if formally the same, describe

different conditional probabilities. On the other hand, the evolution of the state probabilities of the

processes are exactly the same:

(sα(t̃))j = Pr[Yα(t̃) = j] = Pr[Xα(t̃) = j] =
N∑
k=1

(Eα(−Q̃t̃α))jk(sα(0))k > 0, ∀j = 1, ..., N.

Therefore, we claim that the fractional Chapman-Kolmogorov equation

Dα
0 sα(t̃) = −Q̃sα(t̃), 0 < α ≤ 1,
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with initial condition sα(0), also describes the evolution of the semi-Markov processXα(t̃) with Mittag-

Leffler sojourn times (19).

4 Fractional epidemics

We apply the framework discussed in Section 3 to model epidemic processes on networks with the

aim to understand if equation (8) can describe a more realistic epidemic spreading compared to

the Markovian models. Real-world epidemics are characterized by non-exponential infections and

curings [1–3], which implies that the memoryless property of Markovian processes is often unrealistic.

The fractional framework introduces Mittag-Leffler functions (3), which possess power-law heavy tails,

like the functions (e.g. Weibull, Gamma distribution) usually employed in non-Markovian models for

epidemic spreading on networks [4–7]. Without any assumption on the memory structure of the

process (as in section 3.2), a fractional epidemic process formally takes into account the history of the

events happened up to a certain time t̃ and is thus different from a Markov process which neglects the

past. Moreover, it has been shown that non-Markovian models potentially increase the persistence of

the epidemic on the network compared to the Markovian case [4, 6]. In summary, deviating from the

Markovian assumptions can strongly impact on how an epidemic outbreak affects a population.

For the reader’s sake a brief review on Markovian susceptible-infected-susceptible (SIS) epidemics

on a graph 3 is presented in Appendix B.

4.1 Fractional ε-SIS process on networks

In order to extend the ε-SIS process on networks (appendix B) to the fractional framework, the

Chapman-Kolmogorov equation (6) is replaced by the dimensionless fractional Chapman-Kolmogorov

equation (8) employing the definition of the infinitesimal generator (43), provided that the elements of

(43) and the time are dimensionally rescaled as: ε̃ = ε/δ, τ = β/δ, t̃ = δt. The fractional Chapman-

Kolmogorov equation (8) is solved by the probability state vector sα(t̃) = Eα(−Q̃t̃α)sα(0). In analogy

with (44), the nodal viral infection probability is defined as

wα;j(t̃) = Pr[Xα;j(t̃) = 1] = E[Xα;j(t̃)], Wα(t̃) = [wα;1(t̃), ..., wα;N (t̃)]T

and the conversion defined in (45) becomes Wα(t̃) = Msα(t̃). It follows that the average fraction of

infected nodes at time t (i.e. prevalence) in the fractional ε-SIS process on a graph G equals

yα(t̃) =
1

N
uTMEα(−Q̃t̃α)sα(0) =

1

N
uTWα(t̃) =

1

N
||Wα(t̃)||1. (25)

Equivalently, given the linearity of the integration and derivation, when we apply the Caputo fractional

derivative (1) to the ε-SIS governing equations (49), we obtain the dimensionless fractional ε-SIS

governing equation for node i (i = 1, ..., N)

Dα
0E[Xα;i(t̃)] = E

[
−Xα;i(t̃) + (1−Xα;i(t̃))

{
τ

N∑
k=1

akiXα;k(t̃) + ε̃

}]
. (26)

3In the manuscript we use the words “network” and “graph” interchangeably.
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4.1.1 General bounds for the average fraction of infected nodes

We investigate how the fractional derivative affects the initial growth and the convergence towards

the steady state of the epidemic spreading.

Theorem 4.1.1. Given a fractional SIS spreading process on a graph G with N nodes, the average

fraction of infected nodes at time t̃ (i.e. the prevalence yα(t̃)) satisfies the following bounds for α ∈
(0, 1]:

Eα(−t̃
α
)yα(0) ≤ yα(t̃) ≤ min(1, Eα((τ(N − 1)− 1)t̃α)yα(0)). (27)

Proof. See proof in Appendix G.1.

10-3 10-2 10-1 100
0

0.05

0.1

0.15

0.2

0.25

Figure 2: Evolution of the prevalence in the α-fractional extension of the SIS process on a complete

graph with N = 20 nodes, 1 initial infected nodes, infection rate β = 0.2, curing rate δ = 1 (here

self-infection rate ε = 0). Time axis is in log-scale. In solid line the exact prevalence, with + the

upper bound defined in (27).
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Figure 3: Evolution of the prevalence in the α-fractional extension of the SIS process on a complete

graph with N = 20 nodes, N initial infected nodes, infection rate β = 1/N , curing rate δ = 1 (here

self-infection rate ε = 0). Both axes are in log-scale. In solid line the exact prevalence, with + and -

the upper and lower bounds defined in (27).

For τ > 1
N−1 , relation (27) provides an upper bound to the initial growth of the epidemic process

as depicted in Figure 2. The prevalence yα(t̃) cannot increase faster than Eα((τ(N−1)−1)t̃α)yα(0) >

e(τ(N−1)−1)t̃y(0). The bound (27) shows then that the fractional growth can be faster than the Marko-

vian (α = 1) and the growth is faster when α is reduced, as shown in Figure 2. Moreover, compared to

the Markovian case (72), even if τ < 1
N−1 , the epidemics will last longer as the heavy-tailed nature of

the Mittag-Leffler converges extremely slowly. Figure 3 illustrates indeed that the fractional process

is characterized by a power-law decay towards the steady state contrary to the exponentially fast

convergence of the Markov process towards the all-healthy state.

Given that usually the self-infection rate ε is very small, the bounds (27) are approximately valid

also for ε ̸= 0 and indicate that the prevalence of the fractional extension of the ε−SIS on any graph

G presents two main properties: (1) very slow power-law convergence towards the steady state when

τ < 1
N−1 and (2) faster than exponential growth in the beginning of the epidemic spreading when

τ > 1
N−1 . The fractional epidemics for 0 < α < 1 is always worse (i.e. more dangerous) than the

Markovian epidemics because grows faster in the beginning and survives more in the long-run.

4.2 Fractional N-Intertwined Mean-Field Approximation (f-NIMFA)

Equivalently as in Appendix B.5, we replace the nodal variables Xα;i in (26) with their approximated

expected value E[X
(1)
α;i ]. The mean-field approximation of the fractional equations reduces the set (26)

12



of 2N linear fractional equations to N non-linear fractional equations. Although an approximation,

NIMFA enables computations for very large graphs. We denote vα;i(t̃) = Pr[X
(1)
α;i (t̃) = 1] = E[X

(1)
α;i (t̃)]

and we obtain a set of fractional differential equations, which we can call the fractional N-Intertwined

Mean-Field Approximation (f-NIMFA):

Dα
0 vα;i(t̃) = ε̃− (1 + ε̃)vα;i(t̃) + τ(1− vα;i(t̃))

N∑
j=1

aijvα;j(t̃), i = 1, ..., N, (28)

Equation (28) is the fractional extension of (52). We extend the method in [22, Theorem 1] to (28)

on the complete graph KN with N nodes, employing the fact that the Caputo fractional derivative

preserves the properties of ordinary differential equations [14]. Indeed, if we assume vα;i(0) = vα;j(0)

for each i ̸= j = 1, ..., N , the nodal probability vα;i(t̃) = vα(t̃) is the same for each node i = 1, ..., N ,

then (28) becomes for the complete graph KN :

Dα
0 vα(t̃) = ε̃− (1 + ε̃)vα(t̃) + τ(N − 1)(1− vα(t̃))vα(t̃). (29)

Equation (29) is a fractional Riccati differential equation

Dα
0 vα(t̃) = ε̃− c1vα(t̃)− c2v

2
α(t̃),

with c1 = 1 + ε̃− τ(N − 1) and c2 = τ(N − 1), whose analytical solution does not seem to be known

in explicit form for α ∈ (0, 1), but is known for α = 1 (see [23, Appendix C]). If we define the

average number of infected nodes as Iα(t̃) := Nvα(t̃) and the average number of susceptible nodes as

Sα(t̃) := N(1− vα(t̃)), equation (29) is rewritten, after multiplying by the constant N , as

Dα
0 Iα(t̃) = ε̃Sα(t̃)− Iα(t̃) + τ

(N − 1)

N
Sα(t̃)Iα(t̃).

If we define τeff := τ(N − 1)/N , we can finally write the mean-field fractional ε-SIS model as: Dα
0 Iα(t̃) = ε̃Sα(t̃)− Iα(t̃) + τeffSα(t̃)Iα(t̃)

Dα
0Sα(t̃) = −ε̃Sα(t̃) + Iα(t̃)− τeffSα(t̃)Iα(t̃),

(30)

where the total population N = Iα(t̃) + Sα(t̃) is conserved. The set of equations in (30), as well as

similar variations, is usually the starting point of various analyses [24,25] in the homogeneous-mixing

assumption. However, the derivation of the fractional homogeneous-mixing model from (26) is often

ignored.

4.2.1 Fractional epidemic threshold

The Markovian SIS model in Appendix B is characterized by the appearance of a phase transition

when the effective infection rate τ = β/δ approaches the epidemic threshold τc (see appendix B.3.1

for further details). An analysis of the f-NIMFA approximation (Section 4.2) around the epidemic

threshold, formally similar as in [18, Section 17.3.2], leads to

Lemma 4.2.1. The epidemic threshold of the fractional NIMFA SIS process on a fixed graph G equals

τ
(1)
c = 1/λ1, where λ1 is the largest eigenvalue of the adjacency matrix A of the graph G.
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Indeed, the steady state of the f-NIMFA equations (28) and of the Markovian NIMFA equations

(51) is the same, because the fractional derivative does not alter the equations which define the

steady state [8, Section D]. Most of the results known for the Markovian NIMFA approximation are

thus valid also in the fractional framework and the epidemic threshold of the fractional NIMFA SIS

process is independent of the fractional order α. Moreover, employing the properties of the NIMFA

steady-state vector (which is the same for any 0 < α ≤ 1), we can state that the NIMFA epidemic

threshold τ
(1)
c = 1

λ1
, which is a lower bound for the Markovian epidemic threshold as proven in [4]

and [18, Lemma 17.4.6] (i.e. τc > τ
(1)
c ), is also a lower bound for the fractional epidemic threshold.

In the ε-SIS process, usually the self-infection rate ε is assumed to be very small (e.g. ε ≃ 10−6 ·δ),
because the self-infections are often rare in real-world spreading processes, and therefore the epidemic

threshold of the fractional SIS process is a valid control parameter also for the fractional ε-SIS process.

Furthermore, under the semi-Markov assumption, the independence of the epidemic threshold from

the fractional order α is coherent with the fact that the embedded Markov chain [8, sec. F] of the

process does not depend on α.

5 The physics of the fractional equation

So far, we have described the general ε−SIS epidemic process (Appendix B) and the corresponding

fractional extension (sec. 4.1), without detailing the microscopic processes. The Markovian ε−SIS

epidemic process on a network consists of the interactions between independent Poisson infection and

Poisson curing processes [18, sec. 17.2], which cause the sojourn time in state j to be exponentially

distributed with rate q̃jj =
∑

k≥1;k ̸=j(−q̃kj) equal to the sum of all single Poisson rates into state j.

Here, under the semi-Markov assumption, we explain the “microscopic” physics in fractional SIS

epidemics, based on the same process property: given that the process has just transitioned to state

Xα(t̃) = k, the occurrence time of the first arrival T̃j of the j-th process event (i.e. either an infection

or a curing event) in Sα(k), which is the set of all possible events in state k, is the minimum time

Tα(k) of all possible process events in Sα(k), which satisfies {Tα(k) > t} =
⋂

j∈Sα(k)
{T̃j > t}. Inspired

by the sojourn time distribution in the Markovian case, whose rate is given by the sum of the single

independent Poisson processes rates, we propose the generalization (31) for any α, which preserves the

property q̃jj =
∑

k≥1;k ̸=j(−q̃kj) but introduces a non-trivial dependence between the involved infection

and curing processes.

5.1 Dependent fractional ε-SIS process on networks

Our main result is:

Theorem 5.1.1. Let {Xα(t̃), t̃ ≥ 0}, with 0 < α < 1, describe the state at time t̃ of a continuous-

time susceptible-infected-susceptible epidemic process on a fixed graph G with nodal self-infections (ε-

SIS). Let −Q̃ be the corresponding dimensionless Markovian infinitesimal generator. If the following

properties

(a) the infection and curing processes are renewal processes with Mittag-Leffler interarrival times

Fτ (t̃) = 1−Eα(−λt̃α) and parameter λ equal to the Markovian rate of the corresponding Poisson

process for α = 1;

14



(b) the memory of the process is reset every time the process transitions to a new state;

(c) the joint distribution of the occurrence times of possible process events Sα(k) in state k equals

Pr

[ ⋂
j∈Sα(k)

T̃j > t̃j

]
= Eα

(
−

∑
j∈Sα(k)

λj t̃
α
j

)
; (31)

where T̃j is the occurrence time of process events j ∈ Sα(k).

hold, then:

1. the process transition probabilities satisfy the semi-Markov property (20);

2. the process sojourn times follow the Mittag-Leffler distribution (19);

3. the process transition probabilities are described by the embedded Markov chain probabilities (18);

4. the state probability vector of the process solves the fractional Chapman-Kolmogorov equation

(8).

Proof. See proof in Appendix G.2.

Theorem 5.1.1 allows for a novel physical interpretation of the solution of the fractional equation

(8) when the matrix −Q̃ is the infinitesimal generator of a Markovian epidemic process on a fixed

graph. The process in Theorem 5.1.1 is characterized by two driving mechanisms: (1) the “classical”

epidemic one, given by the interactions between susceptible and infected nodes, which directly depends

on the underlying network topology and determines at each new step of the process which are the

events that can happen; (2) the coupling between all the possible infection and curing times, which

is driven by the distribution (31) that creates a positive dependence between all the possible events,

even if the events involve nodes which are many hops (in the shortest path) apart in the underlying

graph. The second mechanism is induced by the application of the Caputo fractional derivative and

is the hallmark of the fractional process.

5.1.1 The role of dependence

The distribution (31) shows that the underlying first occurrence times T̃j of process events are not

independent anymore and that the dependence is due to absence of the semi-group property for the

Mittag-Leffler function [8, Appendix D]. On the other hand for α = 1, the joint distribution (31)

reduces to

Pr

[ ⋂
j∈S1(k)

T̃j > t̃

]
= e

−t̃
∑

j∈S1(k)
λj =

∏
j∈S1(k)

e−λj t̃ =
∏

j∈S1(k)

Pr[T̃j > t̃].

Hence in the Markov case, the sojourn times Pr[T̃j > t̃] are exponentially distributed and events

are independent infection and curing Poisson processes. The semi-group property of the exponential

function leads to independence of the sojourn times and to the famous memory-less property in Markov

processes.
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The joint distribution (31) characterizes the dependence of the occurrence time of all physical

processes, defined in Theorem 5.1.1, at a same state in the Markov graph. Without loss of generality

and to simplify the exposition, we focus on the joint distribution of two process times 4 in (31),

Pr[T̃1 > t̃, T̃2 > t̃] = Eα(−t̃α(λ1 + λ2)). (32)

Comparison of (32) with the joint distribution when the two processes are assumed to be independent

Pr[T̃1 > t̃]Pr[T̃2 > t̃] = Eα(−t̃αλ1)Eα(−t̃αλ2), (33)

illustrates how the dependence affects the interaction of the processes involved in the epidemic spread-

ing. We employ the following lemma:

Lemma 5.1.2. Given two random variables T̃1 and T̃2 and the differences

Y>(t̃) := Pr[T̃1 > t̃, T̃2 > t̃]− Pr[T̃1 > t̃]Pr[T̃2 > t̃] (34)

Y≤(t̃) := Pr[T̃1 ≤ t̃, T̃2 ≤ t̃]− Pr[T̃1 ≤ t̃]Pr[T̃2 ≤ t̃], (35)

then the following identity

Y≤(t̃) = Y>(t̃) (36)

is satisfied at any time t̃.

Proof. See proof in Appendix G.3.

In our specific case, Lemma 5.1.2 together with (32) and (33) leads to

Y>(t̃) = Y≤(t̃) = Eα(−t̃α(λ1 + λ2))− Eα(−t̃αλ1)Eα(−t̃αλ2),
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Figure 4: Plot of Y>(t̃) with λ1 = 1, λ2 = 10 and different values of α.

4Obtainable from (31) by setting t̃1 = t̃2 = t̃ and t̃j = 0 for all the other times T̃j .
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Figure 4 shows that the difference Y>(t̃) > 0 is positive, for each value of t̃ if α < 1 (the difference

is always positive for any λ1 and λ2 as shown in [15]). It means that each process positively influences

the other process. Thus, it is more likely that the two dependent processes both happen after a given

time t̃ compared to the independent case. Lemma 5.1.2 shows that Y≤(t̃) satisfies the same properties

as Y>(t̃), thus Figure 4 also represents Y≤(t̃). In particular, the difference Y≤(t̃) > 0 indicates that

the positive dependence additionally favours the two processes to both happen before a given time

t̃ compared to the independent case. In the Markovian case (i.e. α = 1), all the processes are

independent and Y≤(t̃) = Y>(t̃) = 0.

We rewrite the difference Y>(t̃) in terms of conditional probabilities, using Pr[T̃1 > t̃, T̃2 > t̃] =

Pr[T̃1 > t̃|T̃2 > t̃] Pr[T̃2 > t̃] as

Y>(t̃) =
(
Pr[T̃1 > t̃|T̃2 > t̃]− Pr[T̃1 > t̃]

)
Pr[T̃2 > t̃].

For Mittag-Leffler random variables, as proved in [15], it holds that

Pr[T̃1 > t̃|T̃2 > t̃] > Pr[T̃1 > t̃].

Hence, given that a second process event in a same state occurs after a given time, then it increases

the probability that a first process event also occurs after that same given time.
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Figure 5: Difference between (32) and (33) with λ1 = 1, λ2 = 10. The black dashed line is the

asymptotic value of Pr[T̃1 > t̃|T̃2 > t̃] − Pr[T̃1 > t̃] at large time t̃ → ∞ and can be computed

employing the results in [26, Appendix A].

Figure 5 displays that when t̃ increases, the difference between Pr[T̃1 > t̃|T̃2 > t̃] and Pr[T̃1 > t̃]

becomes larger, implying that the dependence structure becomes more relevant for large sojourn times

of the process.

We conclude with an example that highlights the consequences of the time-dependence property

depicted in Figure 5, and therefore Theorem 5.1.1, for a realistic epidemic in a network. Suppose at
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time 0, two nodes or individuals in a connected network are infected, one node belongs to a cluster

in Tokyo and one node belongs to a cluster in Rome. The two nodes are not directly connected by a

link, but since the network is connected, there exists a path between the two nodes. We denote by T̃1

the curing time of the node in Tokyo and by T̃2 the curing time of the node in Rome. Figure 5 implies

that the probability that the node in Rome takes more than t̃ days to cure increases the probability

that also the curing time of the Tokyo node is larger than t̃. The time-coupling of curing events is

questionable, because a curing event is mainly related to the individual properties of an infected node

(e.g. immune system and its local environment). The dependence (31) in Theorem 5.1.1 is inducing

a simultaneous global positive coordination between all the possible event times given the viral state

of the system, regardless of how far or how close the involved nodes and links are in a connected

network. The described coordination mechanism increases the probability that an event happens at

extremely short or extremely large times compared to the Markovian case, and thus causes the faster

than exponential growth and the power law decay in Figures 2, 3.

5.1.2 Simulations on different graphs

We apply the Monte Carlo method described in Appendix H to simulate the process defined in Theorem

5.1.1. The analytic results for the prevalence (25) on different graphs are then compared with the

results of the Monte Carlo simulations.
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Figure 6: Evolution of the prevalence in the α-fractional extension of the ε-SIS process on a complete

graph with N = 10 nodes, 1 initial infected node in red in the network plot, β = 0.3, δ = 1 and

ε = 10−6. The time axis is in log-scale. The full line is the prevalence in (25) obtained from the

solution of the fractional equation (8). The circles represent the average outcome of the 5 · 103 Monte

Carlo simulations with Tmax = 104.
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Figure 7: Evolution of the prevalence in the α-fractional extension of the ε-SIS process on a

Erdős–Rényi with N = 10 nodes, edge probability p = 0.3, 1 initial infected node in red in the

network plot, β = 1, δ = 1 and ε = 10−6. The time axis is in log-scale. The full line is the prevalence

in (25) obtained from the solution of the fractional equation (8). The circles represent the average

outcome of the 5 · 103 Monte Carlo simulations with Tmax = 104.
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Figure 8: Evolution of the prevalence in the α-fractional extension of the ε-SIS process on a

Barabási–Albert graph with N = 10 nodes, initial clique size m0 = 7, m = 2 degree of the new

added nodes, 1 initial infected node in red in the network plot, β = 0.3, δ = 1 and ε = 10−6. The time

axis is in log-scale. The full line is the prevalence in (25) obtained from the solution of the fractional

equation (8). The circles represent the average outcome of the 5 · 103 Monte Carlo simulations with

Tmax = 104.

Figures 6, 7 and 8 illustrate that the prevalence, computed with the Monte Carlo simulation

(Appendix H) of the process defined in Theorem 5.1.1, coincides with the analytical solution of the

fractional equation (8) regardless of the underlying topology of the contact graph. Theorem 5.1.1

is therefore confirmed to “physically” interpret the solution of the fractional Chapman-Kolmogorov

equation (8) correctly. Figures 6, 7 and 8 also display that a fractional epidemic process is characterized

by a faster than Markovian (α = 1) growth at short times, but slower than Markovian decay at large

times. The behaviour is compatible with the properties of the Mittag-Leffler distribution of the sojourn

times (19).
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Figure 9: The Mittag-Leffler distribution with rate λ equal to 1 for different 0.1 ≤ α ≤ 1. The t̃ axis

in in log-scale. The same plot but with lin-scale is Fig. 1 in [8]. The log-scale illustrates a curious

”almost” symmetry around the ”almost” common intersection point at about t̃ = log 2 for all α.

Figure 9 illustrates indeed the Mittag-Leffler distribution function: higher probability for small

times (i.e. fast infections) causes the prevalence to increase faster for smaller α. On the other hand,

the very slow convergence towards the steady state is caused by the heavy-tailed behaviour of Mittag-

Leffler distribution (which possesses an infinite mean). The behaviour of the prevalence observed in

Figures 6, 7 and 8 also agrees with the underlying coordination mechanism highlighted in Section

5.1.1: compared to the Markovian case, where all process events occur independently of each other,

more events happen at short times due to the dependence that arises from the joint distribution (31)

and the prevalence is indeed higher at short times; for the same reason, events can still happen at

very large times compared to the Markovian independent case and we observe the emergence of the

power law convergence towards the steady state.

6 Conclusion

In order to describe stochastic processes, we have shown that the fractional Chapman-Kolmogorov

equation (8) should be restricted to the fractional order 0 < α ≤ 1 and should be employed in a

dimensionless framework. The fractional extension (8) of Markov processes defines a large class of non-

Markovian stochastic processes, which are difficult to interpret because the mathematical description

does not directly specify the underlying physical mechanisms. For instance, Markovian processes

consist of a set of independent Poisson processes, but an analogous correspondence in the fractional

generalization in (8) is not obvious. Without additional information about the dependence on the

previous states, a physical interpretation of the fractional processes is hardly possible (as also was

concluded in [8]).
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In the general case, the fractional derivative in the governing equations of ε-SIS epidemics on

networks enables the deduction of power-law bounds of the average fraction of infected individuals

(27). Additionally, the fractional N-Intertwined Mean-Field Approximation (f-NIMFA) of the ε-SIS

process on networks (30) provides a useful tool to compute fractional epidemic processes on large

graphs and allows to understand why the epidemic threshold is independent of the fractional order α.

Assuming the independence on previous states in the fractional process similarly as in the Markov

case, we obtain a semi-Markov process with Mittag-Leffler sojourn times (sec. 3.3). The semi-Markov

assumption still features the analytic tractability of the fractional equations (8), while at the same

time allows us to interpret the fractional process physically.

Our main result within a fractional semi-Markovian setting is the novel epidemic description in

Theorem 5.1.1: the single infection and curing processes are dependent renewal processes with Mittag-

Leffler inter-arrival times. Theorem 5.1.1 specifies the “microscopic” level of a “fractional epidemic”

on a fixed graph detailing the interactions between the individual infection and curing processes that

are governed by the fractional Chapman-Kolmogorov equation (8). Moreover, the joint distribution

(31) of the event times of all processes in a same state is a new key result, which highlights a positive

dependence between the competing processes leading to the collective behavior of the average fraction

of infected individuals observed in simulations (Fig. 6, 7, 8).

Although the semi-Markov assumption is “naturally” made in fractional analyses, which implicitly

suggests a similar independence and memory-less property as in Markov processes, our key Theo-

rem 5.1.1 implies that, at a new state, the semi-Markov process is characterized by an interesting

dependence among the times of all infection and curing processes. Those same infection and curing

processes, each with rates determined by the Markovian Q-matrix (which is the same in the fractional

case), are independent in the corresponding Markov process with α = 1. The fractional order α indi-

cates how strong is the dependence (31) between the processes in the network and how heavy-tailed

are the event times: decreasing α the dependence is increased and the probability of very long or very

short events compared to the Markovian case becomes also larger.

While non-exponential infection and curing times have been measured in real-world scenarios [2,3],

the global dependence, discovered in (31), between all the occurrence times of the infection and curing

processes at each step/state seems questionable. If we think about the spreading of a biological

virus on a large contact network between individuals who live in different locations (e.g. different

cities or nations), events which affect people who live far apart are likely not dependent. However,

when considering the transmission of viruses between individuals sharing the same environment (e.g.

household, office), the infection and curing events are naturally dependent. For instance, an infected

individual taking more time to cure in a household, may impact on how long other infections and/or

curings take, because they alter the environment by contaminating objects and/or the air [27,28].

For a rumor spreading on a network, the fractional process framework may include aspects not

considered in Markovian models: for instance, when a rumour spreads on social media the infection

and curing events are not independent, because single infected nodes may affect the recommendation

algorithm of the platform and therefore all other nodes in the network [29].
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A Continuous-time Markov processes

A.1 Definitions and Markov property

A stationary continuous-time Markov process {M(t), t ≥ 0} on the state space S with N states

(i = 1, ..., N) is characterized by the Markov property

Pr[M(t+ τ) = j|M(τ) = i,M(u) = k, 0 ≤ u < τ ] = Pr[M(t+ τ) = j|M(τ) = i], (37)

with i, j, k = 1, ..., N . The transition probabilities are defined as

Pji(t) = Pr[M(t+ τ) = j|M(τ) = i] = Pr[M(t) = j|M(0) = i]

and the probability state vector of the process is defined as

sk(t) = Pr[M(t) = k], k = 1, ..., N.
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Assuming that the N × N transition probability matrix P (t) is continuous and differentiable, the

infinitesimal generator of the Markov process M(t) is defined as

−Q := lim
h→0+

P (h)− I

h
,

where I is the N ×N identity matrix. In particular, the elements of −Q can be physically interpreted

as “rates” since for h → 0

Pr[M(t+ h) = j|M(t) = i] = −qji + o(h)

Pr[M(t+ h) = i|M(t) = i] = 1− qii + o(h).

As a result, if u is the all ones N × 1 vector, uTQ = 0 and det(Q) = 0.

Lemma A.1.1. Given the continuous-time stationary Markov process {M(t), t ≥ 0} whose infinitesi-

mal generator is −Q, the transition probability matrix P (t) satisfies the following forward and backward

equations:

P ′(t) = −P (t)Q (38)

P ′(t) = −QP (t) (39)

Proof. See [18, Lemma 10.2.2].

Given the initial condition P (0) = I, equations (38) and (39) are solved by

P (t) = e−Qt.

We can define the sojourn time τj of state j as the random time the process stays in state j before

transitioning to a different state.

Theorem A.1.2. The sojourn times τj of the continuous-time Markov process M(t) in a state j are

independent, exponential random variables with mean 1
qjj

:

Pr[τj > t] = e−qjjt, j = 1, ..., N.

Proof. See [18, Theorem 10.2.3].

This feature is a consequence of the Markov property (37) and the exponential distribution is the

only distribution for which:

Pr[τj > t+ u|τj > u] = Pr[τj > t], j = 1, ..., N.

If the process M(t) admits a steady state lim
t→∞

s(t) = π, it must satisfy the equation πQ = 0.
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A.2 Chapman-Kolmogorov equation

From the Markov property (37) the evolution of the state probability vector is written as

s(t+ τ) = P (t)s(τ).

Lemma A.1.1 can thus be employed to derive the so-called Chapman-Kolmogorov equation which

describes the evolution of the state probability vector s(t)

d

dt
s(t) = −Qs(t).

Given the initial condition s(0), equation (6) is solved by

s(t) = e−Qts(0).

A.3 Embedded Markov chain

The embedded Markov chain of the continuous-time Markov processM(t) is the corresponding discrete

Markov chain that follows the same state transitions, but that abstracts the sojourn time relation. In

particular the transition probability of the embedded Markov chain can be written as

Vji = lim
h→0+

Pr[M(h) = j|M(h) ̸= i,M(0) = i] = −qji
qii

. (40)

If the embedded Markov chain possesses a steady-state vector, whose components are vi, for i =

1, ..., N , then it obeys [18, sec 10.4]:

vi =
N∑
j=1

Vijvj .

It follows that the components of the steady-state vector π of the continuous Markov process M(t)

can be written as [18, 10.25]:

πi =
vi/qii∑N

j=1 vj/qjj
. (41)

B Brief review of Markovian SIS epidemics on a graph

B.1 Markovian ε-SIS epidemics on a graph

The state of a node i at time t in a Markovian SIS process on a graph is specified by a Bernoulli random

variable Xi (t) ∈ {0, 1}: Xi (t) = 0 for a susceptible node and Xi (t) = 1 for an infected node. A node i

at time t can be in one of the two states: infected, with probability wi(t) = Pr[Xi(t) = 1] or susceptible

with probability 1−wi(t). We assume that the curing (also known as recovery) process per node i is

a Poisson process with rate δ and that the infection process per link is a Poisson process with rate β.

The effective infection rate is τ = β
δ . Only if a node is infected, then it can infect its direct neighbors,

that are still susceptible. Both the curing and infection Poisson process are independent. This is the

general continuous-time description of the simplest type of a Susceptible-Infected-Susceptible (SIS)

process on a network. Occasionally, a third, independent self-infection process with self-infection

rate ε is considered, which describes background or indirect infections. Infections may happen either
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through direct contact or indirectly, for example, after touching infected surfaces or inhaling air in a

closed room previously contaminated by an infected individual. The Markovian ε-SIS model consists

of three, independent Poisson processes: (i) the curing process with rate δ, (ii) infection process with

rate β and (iii) self-infection process with rate ε.

A description of the ε−SIS epidemic process on a graph is as follows. Let I denote the set of

infected nodes in the graph G and let aij be an element of the adjacency matrix A. Then, the Markov

transitions {
for j /∈ I: I 7→ I ∪ {j} at rate β

∑
k∈I akj + ε

for i ∈ I: I 7→ I\ {i} at rate δ
(42)

detail the dynamics between the infected subgraph I and its complement Ic = G\I. The sequel will

specify the high-level description (42) further.

B.2 Markovian assumptions

We will first show that the ε−SIS epidemic process on a fixed graph can be described as a Markov

continuous-time process if we make some assumptions. Once we succeed in transforming a physical

process into the realm of Markov theory, the entire and powerful theory of Markov processes provides

a solution as well as deep insights. A crucial property in Markov theory [18, Chapter 9-10] is that the

current state Xi (t) only depends on the previous state (see also (37)). The Markov property implies

that the processes acting on a state Xi (t) only are independent Poisson processes. All outcomes or

Poisson events are independent in time and occur at exponentially distributed times with the same

mean, which is the inverse of the rate or strength of the Poisson process. Thus, the stronger a Poisson

process operates, the smaller the interarrival time between Poisson events. The Poisson assumption

thus implies that the infection time T as well as the curing or recovery time R are exponential random

variables.

At first glance, the Poisson assumption, apart from the independence assumptions, may raise

doubts and stimulate the search for a non-Markovian theory, because observations indicate that the

infection time T is, for most diseases, not exponentially distributed. Perhaps, one of the compelling

reasons why Markov theory is not so bad for epidemics, is the lack of knowledge when infections or

curings precisely occur. Often, one can determine a time interval [t1, t2], where we know that the

item (or node) is susceptible at time t1, but infected at time t2. Hence, during the time interval

[t1, t2], an infectious event must have occurred at time u ∈ [t1, t2]. If we do not know the occurrence

time u accurately, a defendable modeling assumption is that any time u ∈ [t1, t2] is equally possible.

Precisely, this assumption that, given an event has occurred in the time interval [t1, t2], its occurrence

time u ∈ [t1, t2] is “uniformly distributed” over [t1, t2] is a basic property of the Poisson process that

no other process shares and that is related to its memoryless property. Another property of Poisson

processes and the exponential distribution is that a susceptible node can be infected by any of its

infected, direct neighbors, where each neighbor acts independently of the others. If each neighbor

k ∈ N (i) of node i, where N (i) is the set of neighbors of node i, has rate β, then the node i

is infected by that neighbor that transmits the infection the fastest. This means that the time at

which the infection event at node i occurs, is the minimum of the infection times of each infected

neighbor. The minimum of independent, exponentially distributed times each with rate β is again
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an exponential random variable with rate
∑

k∈N (i) β, a property that we will use in (47) below and

which is further physically explained in a Markov discovery process [18, Section 16.2] that allows us

to model a stochastic shortest path problem on a graph.

B.3 Governing equation of Markovian ε-SIS epidemics

The time-dependent ε-SIS process can be described as a continuous-time Markov chain with 2N

states [30]. Computationally, enumerating the infected subgraphs I in G leads to the governing

equation (6). As explained in [13], we label the Markov state i as i =
∑N

k=1 xk (i) 2
k−1, where the

binary k-th digit xk (i) represents the infectious state of a node k in the network. In other words, any

state i in the SIS Markov graph represents the infectious state of each node in the graph and since

a nodal state Xi is only 0 or 1, the combined binary word x1x2 . . . xN equals i in decimal notation.

In a graph with N nodes, the total number of Markov states is 2N , all possible binary words with N

digits.

The time dependence of the probability state vector s (t) in ε-SIS epidemics, with components

si (t) = Pr[X1(t) = x1 (i) , X2(t) = x2 (i) , ..., XN (t) = xN (i)]

and normalization
∑2N−1

i=0 si (t) = 1, obeys the Chapman-Kolmogorov equation (6), where the 2N×2N

infinitesimal generator −Q 5, specified in [30], has entries

qji =



−δ if j = i− 2m−1;m = 1, 2, ..., N and xm(i) = 1

−ε− β
∑N

k=1 amkxk(i) if j = i+ 2m−1;m = 1, 2, ..., N and xm(i) = 0

−
∑2N

k=1;k ̸=j qkj if j = i

0 otherwise

(43)

The solution of the matrix differential equation is (7). For self-infection rate ε > 0, a non-trivial6

2N × 1 steady-state vector s∞ exists, that obeys Qs∞ = 0, and s∞ is the right-eigenvector belonging

to zero eigenvalue of Q, while the corresponding left-eigenvector is the all-one vector u, that specifies

the basic property uTQ = 0 of any Laplacian −Q.

The nodal viral infection probability is defined as

wj(t) = Pr[Xj(t) = 1] = E[Xj(t)], W (t) = [w1(t), ..., wN (t)]T (44)

and can be obtained from the state vector s(t) with the relation

W (t) = Ms(t), (45)

where M is a N × 2N matrix which contains the states in binary notation but bit-reversed. The

average fraction of infected nodes in G at time t (i.e. prevalence) equals

y(t) =
1

N
uTMe−Qts(0) =

1

N
uTW (t) =

1

N
||W (t)||1. (46)

5We write here −Q, where the matrix Q is a weighted Laplacian. Any Laplacian matrix is positive semi-definite; the

infinitesimal generator −Q of any continuous Markov process is negative semi-definite.
6If the self-infection rate ε = 0, then the Markov graph possesses an absorbing state (i.e. the overall susceptible state

in which there are no infections anymore). Thus, if ε = 0, then the absorbing state, which is labelled as state zero,

specifies the steady-state vector s∞ = e1 for any graph, where the basic vector ek contains all zeros, except for (ek)k = 1.
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The 2N × 1 probability state vector s (t) provides the probability of each possible configurations in

which a subgraph is infected at time t. This interesting information is difficult to simulate with a Monte

Carlo-like algorithm, because sufficient events must be generated in which a particular configuration

is infected at the same time and, consequently, very long simulations are required, even for relatively

small graphs. Although exact, the solution (7) is numerically hard to compute7 for a large size N of

the contact graph.

B.3.1 Markovian SIS epidemics phase transition

Another fundamental property of the Markovian SIS epidemic on a graph is whether a virus will spread

through the entire network or will die out (when ε = 0). Many authors (see [31–33]) define the epidemic

threshold as a parameter τc which separates two different phases of the dynamic spreading process

on a network: if the effective infection rate τ = β/δ is above the threshold τc, the infection spreads

and eventually becomes persistent in time; if τ is below τc, the infection dies out exponentially fast.

An infection becomes persistent in time when a large fraction of the total population stays infected

for a time period which is many times longer than the average time a single nodes takes to cure

(e.g. E[Tδ] = 1/δ). The exact epidemic threshold for the SIS process on finite networks is still an

open problem. Thus, all details about the phase transition of the ε-SIS process around the epidemic

threshold, that are embedded in the huge 2N × 2N matrix Q, are still waiting to be unraveled.

For example, as inspired by phase transitions in physics, are all joint probabilities si (t) of the

same order of magnitude in a narrow region around the epidemic threshold? Although the nature

of the epidemic phase transition is different from the crystallization of matter from the liquid to the

solid phase, in particular the freezing of water around zero Celsius, a comparable interpretation may

be asked for: “How does long-range epidemic “freezing” grows from disconnected infected subgraphs

towards a massive interconnected “ice-plate” over the entire graph in the endemic phase, when sweep-

ing an effective infection rate τ from below to above the epidemic threshold?” Exact analyses of the

nodal infection probability Pr [Xj (t) = 1] for any node j in the complete graph are presented in [34]

and [35] and for the star in [36].

B.3.2 Example: ε-SIS on 3 nodes 1-dimensional lattice

As an example, let us consider the ε-SIS process on a 1-dimensional lattice with 3 nodes. The

infinitesimal generator (43) becomes

Q =



3ε −δ −δ 0 −δ 0 0 0

−ε δ + β + 2ε 0 −δ 0 −δ 0 0

−ε 0 δ + 2(β + ε) −δ 0 0 −δ 0

0 −(β + ε) −(β + ε) 2δ + β + ε 0 0 0 −δ

−ε 0 0 0 δ + β + 2ε −δ −δ 0

0 −ε 0 0 −ε 2(δ + β) + ε 0 −δ

0 0 −(β + ε) 0 −(β + ε) 0 2δ + β + ε −δ

0 0 0 −β − ε 0 −(2β + ε) −(β + ε) 3δ


7Standard solvers in commercial software as Matlab and Mathematica can compute the solution up to N = 12.
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A entry Qji = qji indicates (minus) the rate at which the process can transition from state i to state j.

For instance −Q75 = 2β+ε (matrix indices start from 0) is the rate with which the process transitions

from state i = 5 (in binary 101) to state j = 7 (in binary 111), and is given by the infection rates

β of the two neighbours of the susceptible central node, summed with the self-infection rate ε of the

susceptible central node. Figure 10 displays the 2N state space and the possible transition of the

process.
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Figure 10: The state diagram for the ε-SIS in a path graph with N = 3 nodes. In bold the binary

numbering of the states. The lines represent the possible transitions in the Markov process, whose

rates are given by the infinitesimal generator Q.

B.4 Physical approach towards Markovian SIS epidemics

The fact, that the Markov state Xi (t) in SIS epidemics is a Bernoulli random variable, facilitates an

elegant and physical differential equation for the infection probability of node i, first proposed in [37],

dE [Xi(t)]

dt
= E

[
−δXi(t) + β (1−Xi(t))

N∑
k=1

akiXk(t)

]
(47)

= −δE [Xi(t)] + β

N∑
k=1

akiE [Xk(t)]− β

N∑
k=1

akiE [Xi(t)Xk(t)] (48)

The time-derivative of the infection probability E [Xi(t)] = Pr [Xi(t) = 1] of a node i consists of the

expectation of two competing processes in (47), expressed in the Bernoulli random variableXi ∈ {0, 1}:
(a) if node i is infectedXi = 1, then the node i is cured at rate δ and only first term in (47) matters, else

(b) if node i is susceptible Xi = 0, only the second term in (47) plays a role, indicating that all infected

neighbors
∑N

k=1 akiXk of node i try to infect the node i with rate β. The first term in (47) refers to a

nodal process with curing strength δ, whereas the second term in (47) is a link process on the graph with

infection strength ranging over integer multiples m =
∑N

k=1 akiXk of β with 0 ≤ m ≤ di, the degree of

node i. The Bernoulli random equation between brackets [.] represent the simple local rule of the SIS

process, which is essentially an “if-then-else” statement. Usually an “if-then-else” statement requires

non-linear operations, but here is decoded by a linear sum of two Bernoulli terms. The last term

in (47), containing joint probabilities E [Xi(t)Xk(t)] = Pr [Xi(t) = 1, Xk(t) = 1], is complicating and

requires us to deduce the differential equation for E [Xi(t)Xj(t)], which is found in [18, Section 17.3].
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The resulting differential equation for
dE[Xi(t)Xj(t)]

dt contains the joint probabilities E [Xi(t)Xj(t)Xk(t)]

of the triples. Continuing in this manner as shown in [18, Section 17.3], we again arrive at the 2N

linear differential equations in (6). The exponentially increasing set of linear equations in the size N of

the graph (or system) describes the complex interacting processes, whose emergent behavior contains

a phase transition around the epidemic threshold.

When the self-infection rate ε ̸= 0 the governing equations are

dE [Xi(t)]

dt
= E

[
−δXi(t) + (1−Xi(t))

{
β

N∑
k=1

akiXk(t) + ε

}]
(49)

= ε− (δ + ε)E [Xi(t)] + β
N∑
k=1

akiE [Xk(t)]− β
N∑
k=1

akiE [Xi(t)Xk(t)] (50)

because if node i is susceptible then Xi = 0, and node i can also self-infect with rate ε.

B.5 First-order mean-field approximation NIMFA

Many interesting insights from (47) can be deduced. First, a powerful mean-field approximation,

called N -Intertwined Mean Field Approximation8 (NIMFA) [13, 38], follows from (47) by replacing

the random variable Xi by its simplest approximation, its mean9 vi (t) = E
[
X

(1)
i

]
,

dvi (t)

dt
= −δvi (t) + β (1− vi (t))

N∑
j=1

aijvj (t) (51)

The accuracy of NIMFA in (51) is assessed in [39]. Second, the NIMFA epidemic threshold τ
(1)
c = 1

λ1

in [13, Lemma 6], where λ1 is the largest eigenvalue or spectral radius of the adjacency matrix A, is

proved in [4] to be a lower bound for the Markovian epidemic threshold, i.e. τc > τ
(1)
c . Also [40],

the NIMFA infection probability vi (t) upper bounds Pr [Xi (t) = 1]. The joint probability E [XiXk] =

Pr [Xi = 1, Xk = 1] = Pr [Xi = 1|Xk = 1]Pr [Xk = 1] is approximated in NIMFA by E
[
X

(1)
i

]
E
[
X

(1)
k

]
and the NIMFA independence implies that the conditional probability Pr [Xi = 1|Xk = 1] is replaced

by Pr
[
X

(1)
i = 1

]
, while the Markovian epidemics satisfies the inequality Pr [Xi = 1|Xk = 1] ≥ Pr [Xi = 1]

as proved in [41,42]. Further, NIMFA has been extended to a large variety of compartmental models

in [43], exact solutions of the NIMFA differential equation (51) on the complete graph are derived

in [22] and analytic solutions around the epidemic threshold in terms of tanh (x) are deduced in [44].

After dividing both sides in (51) by δ > 0 and denoting the dimensionless time t̃ = t
δ , the

dimensionless NIMFA equation

dvi
(
t̃
)

dt̃
= −vi

(
t̃
)
+ τ

(
1− vi

(
t̃
)) N∑

j=1

aijvj
(
t̃
)

8From a local and nodal perspective, the Markov chain of node is a simple two-state Markov graph, where state 0

corresponds to the susceptible state and state 1 is the infected state. The transition from state 1 to 0 has transition rate

equal to δ, but the transition rate from state 0 to 1 is complicated, due to the interaction with infected neighbors. The

latter interaction intertwines the local state dynamics of all N nodes in the graph.
9Since the NIMFA differential equation (51) is an approximation, E

[
X

(1)
i

]
is written instead of the exact E [Xi].

Moreover, the superscript (1) refers to the first-order mean-field approximation. Higher-order mean-field approximations

contain higher order moments.

33



only contains as parameter the effective infection rate τ , while the nodal infection probability vi
(
t̃
)
is

expressed in time units of the average curing time E [R] = 1
δ .

The heterogeneous NIMFA equation [44] is

dvi (t)

dt
= −δivi (t) + (1− vi (t))

N∑
j=1

βijaijvj (t)

where δi is the curing rate of node i and βij is the infection rate from node j to node i. The

heterogeneous NIMFA matrix differential equation for the N × 1 infection probability vector v (t) =

(v1 (t) , v2 (t) , . . . , vN (t)) is

dv (t)

dt
= −Dv (t) + diag (u− v (t))Bv (t)

where u is the N × 1 all-one vector, the N × N curing rate matrix D = diag(δ1, δ2, . . . , δN ) and the

N×N infection rate matrix B contains as elements Bij = βijaij . The basic reproduction number R0 is

defined as “The expected number of secondary cases produced, in a completely susceptible population,

by a typical infective individual during its entire period of infectiousness”. Van den Driessche and

Watmough [45] demonstrated that R0 = ρ
(
D−1B

)
, where ρ (U) denotes the spectral radius of a square

matrix U . In the homogeneous setting, the basic reproduction number R0 = β
δ λ1 = τλ1. Since the

epidemic threshold τ
(1)
c in a first-order mean-field approximation as NIMFA corresponds to R0 = 1, we

again find that τ
(1)
c = 1

λ1
. Hence, the basic reproduction number R0 = τ

τ
(1)
c

is inversely proportional

to the first-order mean-field epidemic threshold τ
(1)
c = 1

λ1
. The precise relation between the basic

reproduction number R0 and the Markovian epidemic threshold τc is, to the best of our knowledge,

not known.

When the self-infection rate ε̃ = ε/δ ̸= 0, the dimensionless NIMFA equation becomes

dvi
(
t̃
)

dt̃
= −vi

(
t̃
)
+
(
1− vi

(
t̃
)){

τ
N∑
j=1

aijvj
(
t̃
)
+ ε̃

}
. (52)

C Fractional equation in probability theory for α > 1

We show that when m > 1 and α > 1, the conditions uT sα(t̃) = 1 and (12) are not sufficient for the

solution (5) to describe a probability vector at any time t̃.

Consider a 3× 3 Laplacian matrix Q̃, which satisfies the condition uT Q̃ = 0,

Q̃ =

 0 −1 0

0 1.5 −2

0 −0.5 2

 (53)

and choose as initial conditions for the fractional differential equation (4) with m = 2 and α = 1.5 sα(0) = (0, 1, 0)

s′α(0) = (−2, 1, 1)
(54)
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compliant to (12) which in this case translates to uT sα(0) = 1

uT s
(n)
α (0) = 0

The evolution over time of the 3 components of the solution (5), shown in Fig. 11, indicates that the

components of the vector sα(t̃), which represent probabilities, can be negative.

Figure 11: Components of the solution of Equation (4) for m = 2, α = 1.5, Q̃ equal to (53) and initial

conditions (54).

Therefore, the conditions uT sα(t̃) = 1 for every t̃ and uT s
(n)
α (0) = 0 together are not sufficient to

guarantee that the components of the vector sα(t̃) are probabilities values between [0, 1].

D Solution of the system of fractional forward equations

We show that the matrix Eα(−Q̃t̃α) solves the first equation of the system (23).

The single-sided Laplace transform for complex z is defined as [46]:

φ(z) =

∫ ∞

0
e−zt̃f(t̃)dt̃ = L[f(t̃)], (55)

while the inverse Laplace transform is defined as [46]:

f(t̃) =
1

2πi

∫ c+i∞

c−i∞
φ(z)ezt̃dt = L−1[f(t̃)] (56)

We employ relation (22) in [8] to write the Laplace transform of the fractional derivative of the αP ji(t̃):

L[Dα
0 αP ji(t̃)] = zαL[αP ji(t̃)]− zα−1

αP ji(0), (57)
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from which (23) becomes

zαL[αP ji(t̃)]− zα−1
αP ji(0) = −

N∑
l=1

L[αP jl(t̃)]q̃li. (58)

If we define the Laplace transformed transition matrix whose elements are Φji(z) := L[αP ji(t̃)],

expression (58) can be written in matrix form as:

Φ(z)(zαI + Q̃) = zα−1I, (59)

in which I is the identity matrix coming from the initial conditions Pji(0) = δji. If we assume that Q̃

is diagonalizable, we decompose

Q̃ =
N∑
k=1

µ̃kxky
T
k , (60)

where µk with Re(µk) ≥ 0 is the non-negative eigenvalue belonging to the right-eigenvector xk and

the left-eigenvector yk of Q̃. Substituting (60) into (59) and using the decomposition of the identity

I =
∑N

k=1 xky
T
k , we obtain:

Φ(z)

N∑
k=1

(zα + µ̃k)xky
T
k =

N∑
k=1

zα−1xky
T
k . (61)

The matrix B(z) =
∑N

k=1(z
α + µ̃k)xky

T
k can be inverted, for Re(z) > 0 as

(B(z))−1 =
N∑
k=1

1

(zα + µ̃k)
xky

T
k ,

from which (61) becomes Φ(z)B(z) = zα−1I and solved for Φ(z) as

Φ(z) = zα−1(B(z))−1 =

N∑
k=1

zα−1

(zα + µ̃k)
xky

T
k , (62)

Inverse Laplace transforming (62) yields the transition probability matrix:

αP (t̃) =

N∑
k=1

Eα(−µ̃k t̃
α)xky

T
k . (63)

Substituting the Taylor series of the Mittag-Leffler function (3), we re-express (63) as:

αP (t̃) =

N∑
k=1

( ∞∑
m=0

µ̃m
k (−tα)m

Γ(1 + αm)

)
xky

T
k

=

∞∑
m=0

(−tα)m

Γ(1 + αm)

N∑
k=1

µ̃m
k xky

T
k

Invoking the spectral decomposition (60), followed by the Taylor series results in

αP (t̃) =
∞∑

m=0

Q̃m(−tα)m

Γ(1 + αm)
=

= Eα(−Q̃t̃α). (64)
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E Semi-Markov processes as time transformed Markov process

It is known in literature [20,47], that the process defined in (17) can be also constructed by replacing

the deterministic time t̃ in the Markov process presented in Appendix A with a random time given by a

stochastic process which produces non-negative and non-decreasing trajectories. The process involved

is the right-continuous inverse of an independent α-stable subordinator. An α-stable subordinator

is a non-decreasing stochastic process with stationary, independent increments, whose distribution is

strictly stable with a characteristic exponent α. A stochastic process H(t̃) is said to be strictly α-stable

if limt→∞
H(ct̃)

H(t̃)
= c1/α. The right-continuous inverse of the α-stable subordinator H(t̃) is defined as:

L(t̃) := inf{s ≥ 0 : H(s) > t̃} (65)

and is the first passage time of the stable subordinator above time t̃ ≥ 0. The stable subordinator

H(s) is a strictly increasing pure jump process while the inverse L(t̃) is continuous and shows flat

periods which are caused by the jumps of the subordinator [47, Fig. 4-5]. In [20, 47] it is therefore

shown that the process (17) is the same as the Markov process M(t̃) presented in Section A if t̃ → L(t̃)

and that M(L(t̃)) has the same Mittag-Leffler times of Xα(t̃):

M(L(t̃))
d
= Xα(t̃), t̃ ≥ 0.

A semi-Markov process with Mittag-Leffler sojourn times can thus be interpreted as a Markov process

which evolves in its state space with random bursts and delays that cause the sojourn times to be

Mittag-Leffler distributed (19).

F Bounds for the prevalence of the Markovian SIS on a graph

Starting from (50) we devise an upper and a lower bound for the average fraction of infected nodes

in a graph G in which a spreading process described by the ε-SIS model takes place. Since 0 ≤∑N
k=1Xi(t)Xk(t) we can deduce an upper-bound for the nodal viral infection probability [18, Sec.

17.3.3]:
dW (t)

dt
≤ εu+ (βA− (δ + ε)I)W (t). (66)

It follows, in the dimensionless framework (ε̃ = ε/δ, τ = β/δ, t̃ = δt):

W (t̃) ≤ e(τA−(1+ε̃))t̃ W (0) +

∫ t̃

0
e(τA−(1+ε̃)I)(t̃−s)ε̃u ds. (67)

We can use (67) to bound the prevalence (46) similarly as in [48]. Given an N × 1 vector v and a

positive and symmetric matrix H, the Jensen inequality stands [18, sec. 5.2]:

||eHv||2 ≤ ||eH ||2 ||v||2 ≤ e||H||2 ||v||2 = eλ1(H) ||v||2, (68)

where λ1(H) is the largest eigenvalue ofH which is positive and real. Moreover, from the Cauchy–Schwarz

inequality:

||v||2 ≤ ||v||1 ≤
√
N ||v||2. (69)
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For ε = 0 we compute the 2-norm of (67):

||W (t̃)||2 ≤ ||e(τA−I)t̃ W (0)||2,

which employing (68) is rewritten as:

||W (t̃)||2 ≤ e(τλ1−1)t̃ ||W (0)||2, (70)

with λ1 largest eigenvalues of the adjacency matrix A. Given that ||W (t̃)||1 = Ny(t̃), and in view of

the inequalities (69) we rewrite (70) as an upper-bound for the prevalence:

y(t̃) ≤ e(τλ1−1)t̃
√
Ny(0), (71)

Also employing the lower bound from [23, Section B], then we write:

e−t̃y(0) ≤ y(t̃) ≤ e(τλ1−1)t̃
√
Ny(0). (72)

The bounds in (72) highlight that, for τ < 1
λ1
, the process tends exponentially fast to the overall

healthy steady state on any graph G. For the complete graph, (70) is also valid for the 1-norm:

||W (t̃)||1 ≤ e(τλ1−1)t̃ ||W (0)||1. (73)

Indeed, starting from (67) with ε = 0:

||W (t̃)||1 ≤ ||e(τA−I)t̃ W (0)||1. (74)

Employing the eigendecomposition A =
∑N

k=1 λkvkv
T
k of the adjacency matrix of the complete graph

[17, Section 6.1] and choosing normalized eigenvectors such that vTk vk = 1, as in [49, eq. 15]:

λ1 = N − 1, v1 =
1√
N
u

λk = −1, vk =
√

N−k+1
N−k+2



0(k−2)×1

1

− 1
(N−k+1)

...

− 1
(N−k+1)


, k = 2, ..., N,

we obtain from (74):

||W (t̃)||1 ≤ ||e(τλ1−1)t̃ 1

N
uuTW (0) + e−(τ+1)t̃

N∑
k=2

vkv
T
k W (0)||1.

Writing explicitly the vectors:

||W (t̃)||1 ≤ ||e(τλ1−1)t̃ 1

N


∑N

k=1Wk(0)
...∑N

k=1Wk(0)

+ e−(τ+1)t̃ 1

N


(N − 1)W1(0)−

∑
k ̸=1Wk(0)

(N − 1)W2(0)−
∑

k ̸=2Wk(0)
...

(N − 1)WN (0)−
∑

k ̸=N Wk(0)

 ||1,
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we sum the two vectors obtaining:

||W (t̃)||1 ≤
1

N
||


(e(τλ1−1)t̃ + (N − 1)e−(τ+1)t̃)W1(0) +

∑
k ̸=1(e

(τλ1−1)t̃ − e−(τ+1)t̃)Wk(0)

(e(τλ1−1)t̃ + (N − 1)e−(τ+1)t̃)W2(0) +
∑

k ̸=2(e
(τλ1−1)t̃ − e−(τ+1)t̃)Wk(0)

...

(e(τλ1−1)t̃ + (N − 1)e−(τ+1)t̃)WN (0) +
∑

k ̸=N (e(τλ1−1)t̃ − e−(τ+1)t̃)Wk(0)

 ||1.

(75)

Given that λ1 = N −1, the term e(τλ1−1)t̃−e−(τ+1)t̃ is always positive for t̃ ≥ 0, τ ≥ 0 and thus all the

elements of the vector in (75) are positive which allow us to drop the absolute value when performing

the 1-norm. Explicitly preforming the 1-norm in (75) we obtain

||W (t̃)||1 ≤
1

N

N∑
i=1

(
(e(τλ1−1)t̃ + (N − 1)e−(τ+1)t̃)Wi(0) +

∑
k ̸=i

(e(τλ1−1)t̃ − e−(τ+1)t̃)Wk(0)

)

=
1

N

(
(e(τλ1−1)t̃ + (N − 1)e−(τ+1)t̃)||W (0)||1 + (N − 1)(e(τλ1−1)t̃ − e−(τ+1)t̃)||W (0)||1

)
which translates in

||W (t̃)||1 ≤ e(τλ1−1)t̃||W (0)||1.

In summary:

e−t̃y(0) ≤ y(t̃) ≤ e(τ(N−1)−1)t̃y(0). (76)

The upper bound in (76) is consistently better than (72) highlighting the fact that for τ < 1
λ1

the

process tends exponentially fast to the steady state. Relation (76) provides bounds for the prevalence

on any graph when ε = 0. Indeed, the complete graph is the topology in which the prevalence is

always higher than any other graph because there is the higher number of infection links available,

and the lower bound is general as shown in [23, Section B]. It follows that the prevalence y(t̃) cannot

increase faster than the exponential e(τ(N−1)−1)t̃y(0).

G Proofs

Here we report the proofs of lemmas and theorems presented in the main body of the paper.

G.1 Proof of Theorem 4.1.1

Proof. The proof is the generalization of the results (72) and (76) to the fractional framework. Starting

from the fractional extension of (66) in the dimensionless framework:

Dα
0Wα(t̃) ≤ ε̃u+ (τA− (1 + ε̃)I)Wα(t̃), (77)

from [14, Theorem 7] the solution of (77) writes:

Wα(t̃) ≤ Eα((τA− (1 + ε̃))t̃α) Wα(0) +

∫ t̃

0
t̃α−1Eα,α((τA− (1 + ε̃))(t̃α − s))ε̃u ds.

It follows that for ε = 0, all the steps performed in Appendix F are still valid and therefore (72)

becomes:

Eα(−t̃
α
)yα(0) ≤ yα(t̃) ≤ Eα((τλ1 − 1)t̃α)

√
Nyα(0). (78)
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Employing the eigendecomposition of the complete graph adjacency matrix A as in (76), and the fact

that the prevalence in the complete graph upper bounds the prevalence in any other graph, relation

(78) becomes (27). The minimum on the right-hand side of (27) is given by the fact that the prevalence

is never bigger than 1.

G.2 Proof of Theorem 5.1.1

Proof of 1. Proposition (b) implies that the process restarts and forgets the past after each transition

to a new state, from which the semi-Markov property (20) follows directly.

Proof of 2. Given property (b), when the process Xα(t̃) enters in a new state k, the distribution of

the sojourn time in state k can be computed as:

Pr[τ̃k ≤ t̃] = Pr[ min
j∈Sα(k)

{T̃j} ≤ t̃] = 1− Pr[
⋂

j∈Sα(k)

{T̃j > t̃}].

Invoking (31) of property (c) in the right-hand side of the sojourn time distribution yields

Pr[τ̃k ≤ t̃] = 1− Pr

[ ⋂
j∈Sα(k)

{T̃j > t̃}
]
= 1− Eα

(
− t̃α

∑
j∈Sα(k)

λj

)
.

Property (a) tells us that the set {λj}j∈Sα(k) correspond to the rates of the Poisson processes which

define the entries of the (scaled) infinitesimal generator −Q̃ defined in (43) corresponding to the same

transition in the Markov case (α = 1) and therefore
∑

j∈Sα(k)
λj =

∑2N

j≥1,j ̸=k(−qjk) = qkk, resulting in

Pr[τ̃k ≤ t̃] = 1− Eα

(
− t̃αq̃kk

)
and (19) is proven.

Proof of 3. In the Markovian case, the embedded Markov chain probability Vji of a specific transition

i → j is given by the probability that the Poisson event, which causes the system transition to state j

given the current state i, occurs before all the other possible process events. Using properties (a) and

(c), we compute the probability that a specific process event happens before all the others, knowing

that the events possess joint Mittag-Leffler waiting times given by (31). The joint probability density

of the first arrival times of n events follows from (31) as

fT̃1,...,T̃n
(t̃1, ..., t̃n) = (−1)n

∂n

∂t̃1 . . . ∂t̃n
Pr

[ n⋂
j=1

T̃j > t̃j

]
.

Without loss of generality, we consider the probability that the event T̃1 happens before all the

others

Pr

[ n⋂
i=2

T̃1 < T̃i

]
=

∑
σj∈P2,...,n

Pr

[
{

n⋂
i=2

T̃1 < T̃i} ∩ {T̃σj(1) < T̃σj(2) < ... < T̃σj(n−1)}
]

(79)

with P2,...,n set of all the possible (n− 1)! permutations of the indices 2, ..., n and σj(k) k-th element

of the permutation σj . For instance if n = 4, a permutation σj [{2, 3, 4}] = {2, 4, 3} and σj(2) = 4.
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Expression (79) is obtained employing the law of total probability because the set of all the events

Eσj
:= {T̃σj(1) < T̃σj(2) < ... < T̃σj(n−1)}, with σj ∈ P2,...,n, is mutually exclusive and collectively

exhaustive. We denote the joint probability distribution (31) as

Hα(t̃1, ..., t̃n;λ1, ..., λn) := Eα

(
−

n∑
j=1

λj t̃
α
j

)
, α ∈ (0, 1], n ≥ 1 (80)

and we focus on one of the terms in the right-hand side of (79),

Pr

[
{

n⋂
i=2

T̃1 < T̃i} ∩ {T̃2 < T̃3 < ... < T̃n}
]
= (−1)n

∫ ∞

0
dt̃n

∫ t̃n

0
dt̃n−1 · · ·

∫ t̃2

0
dt̃1

∂n

∂t̃1 · · · ∂t̃n
Hα(t̃1, ..., t̃n;λ1, ..., λn).

(81)

We define the multiple integral operator asIn[h(t̃1, ..., t̃n)] =
∫∞
0 dt̃n

∫ t̃n
0 dt̃n−1 · · ·

∫ t̃2
0 dt̃1

∂n

∂t̃n···∂t̃1
h(t̃1, ..., t̃n)

In−1[h(t̃1, ..., t̃n)] =
∫∞
0 dt̃n

∫ t̃n
0 dt̃n−1 · · ·

∫ t̃3
0 dt̃2

∂n−1

∂t̃n···∂t̃2
h(t̃1, ..., t̃n).

(82)

The well-known Leibniz integral rule

d

dx

(∫ b(x)

a(x)
f(x, t) dt

)
= f

(
x, b(x)

)
· d

dx
b(x)− f

(
x, a(x)

)
· d

dx
a(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t) dt, (83)

with f(x, t) and ∂xf(x, t) integrable functions on the set [a(x), b(x)], allows us to move a partial

derivative out of an integral, if the upper limits of the integral are not functions of the variables that

we are differentiating. Therefore we rewrite (81) as

Pr

[
{

n⋂
i=2

T̃1 < T̃i} ∩ {T̃2 < ... < T̃n}
]
= (−1)n

∫ ∞

0
dt̃n

∫ t̃n

0
dt̃n−1

∂

∂t̃n
· · ·
∫ t̃2

0
dt̃1

∂

∂t̃2

∂

∂t̃1
Hα(t̃1, ..., t̃n;λ1, ..., λn).

We apply again (83) to move ∂/∂t̃2 out from the integral in dt̃1 and obtain

Pr

[
{

n⋂
i=2

T̃1 < T̃i} ∩ {T̃2 < ... < T̃n}
]
= (−1)n

∫ ∞

0
dt̃n · · ·

∫ t̃3

0
dt̃2

∂

∂t̃3

(
∂

∂t̃2

∫ t̃2

0
dt̃1

∂

∂t̃1
Hα(t̃1, ..., t̃n;λ1, ..., λn)

−
[

∂

∂t̃1
Hα(t̃1, ..., t̃n;λ1, ..., λn)

]
t̃1=t̃2

)
. (84)

We evaluate the last term in (84) using definition (80),[
∂

∂t̃1
Hα(t̃1, ..., t̃n;λ1, ..., λn)

]
t̃1=t̃2

=

[
− λ1t̃

α−1
1 Eα,α

(
−

n∑
j=1

λj t̃
α
j

)]
t̃1=t̃2

= −λ1t̃
α−1
2 Eα,α

(
− (λ1 + λ2)t̃

α
2 −

n∑
j=3

λj t̃
α
j

)
.

Noticing that the last expression is equivalent to a derivative in ∂t̃2 we write[
∂

∂t̃1
Hα(t̃1, ..., t̃n;λ1, ..., λn)

]
t̃1=t̃2

=
λ1

λ1 + λ2

∂

∂t̃2
Eα

(
− (λ1 + λ2)t̃

α
2 −

n∑
j=3

λj t̃
α
j

)
=

λ1

λ1 + λ2

∂

∂t̃2
Hα(t̃2, t̃3, ..., t̃n;λ1 + λ2, λ3, ..., λn), (85)

41



having employed in the last line the definition (80) in which the variable t̃1 is removed and the

parameter λ2 associated to the variable t̃2 is replaced with λ1 + λ2. Evaluating the integral in dt̃1 in

(84) we obtain:

Pr

[
{

n⋂
i=2

T̃1 < T̃i} ∩ {T̃2 < ... < T̃n}
]
= (−1)n

∫ ∞

0
dt̃n · · ·

∫ t̃3

0
dt̃2

∂

∂t̃3

[
∂

∂t̃2
Hα(t̃2, t̃3, ..., t̃n;λ1 + λ2, λ3, ..., λn)

− ∂

∂t̃2
Hα(t̃2, ..., t̃n;λ2, ..., λn)−

[
∂

∂t̃1
Hα(t̃1, ..., t̃n;λ1, ..., λn)

]
t̃1=t̃2

,

(86)

given that Hα(0, t̃2, ..., t̃n;λ1, λ2, ..., λn) = Hα(t̃2, ..., t̃n;λ2, ..., λn). Substituting (85) in to (86) we

obtain

Pr

[
{

n⋂
i=2

T̃1 < T̃i} ∩ {T̃2 < ... < T̃n}
]
= (−1)n

∫ ∞

0
dt̃n · · ·

∫ t̃3

0
dt̃2

∂

∂t̃3

[
∂

∂t̃2
Hα(t̃2, t̃3, ..., t̃n;λ1 + λ2, λ3, ..., λn)

− ∂

∂t̃2
Hα(t̃2, ..., t̃n;λ2, ..., λn)−

λ1

λ1 + λ2

∂

∂t̃2
Hα(t̃2, t̃3, ..., t̃n;λ1 + λ2, λ3, ..., λn)

]
.

Then, employing (82), (86) becomes:

Pr

[
{

n⋂
i=2

T̃1 < T̃i} ∩ {T̃2 < ... < T̃n}
]
= (−1)nIn−1[Hα(t̃2, t̃3, ..., t̃n;λ1 + λ2, λ3, ..., λn)]

λ2

λ1 + λ2

− (−1)nIn−1[Hα(t̃2, ..., t̃n;λ2, ..., λn)].

Rewriting also (81) in terms of the notation (82), we establish a recursion valid for n ≥ 2 and α ∈ (0, 1]

In[Hα(t̃1, ..., t̃n;λ1, ..., λn)] = In−1[Hα(t̃2, t̃3, ..., t̃n;λ1 + λ2, λ3, ..., λn)]
λ2

λ1 + λ2

− In−1[Hα(t̃2, ..., t̃n;λ2, ..., λn)]. (87)

We proceed by demonstrating that In[Hα(t̃1, ..., t̃n;λ1, ..., λn)] does not depend on α. The proof

applies the principle of induction on the recursion (87). The induction hypothesis is that In−1 does

not dependent on α and the recursion then shows that also In does not depend on α. It remains to

show that the start of the induction at n = 2 is also independent of α. For n = 2, the recursion (87)

simplifies to

I2[Hα(t̃1, t̃2;λ1, λ2)] =
λ2

λ1 + λ2

∫ ∞

0
dt̃2

∂

∂t̃2
Eα(−(λ1 + λ2)t̃

α
2 )−

∫ ∞

0
dt̃2

∂

∂t̃2
Eα(−λ2t̃

α
2 )

= − λ2

λ1 + λ2
+ 1 =

λ1

λ1 + λ2
.

The quantity obtained in the n = 2 case corresponds to the embedded Markov chain probabil-

ity in the Markovian case (α = 1) [18, sec. 10.6], where the arrival distribution is exponential.

It follows that I2[Hα(t̃1, t̃2;λ1, λ2)] is independent of α and by induction it proves that for all n,

In[Hα(t̃1, ..., t̃n;λ1, ..., λn)] does not depend on α. In summary, (79) is the same for any value of

α ∈ (0, 1] and therefore the process transition probabilities are exactly the same as in the Markov case

(i.e. embedded Markov chain probabilities (18)).
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Proof of 4. The three previous proofs indicate that Xα(t̃) is a semi-Markov process as defined in

Section 3.3. The renewal equation (22), which defines the evolution of the transition probabilities of

the process, is solved by

αP ji(t̃) = Pr[Xα(t̃) = j|Xα(0) = i] = Eα(−Q̃t̃α).

If sα(t̃) = [Pr[Xα(t̃) = 1, ...,Pr[Xα(t̃) = N ]] is the probability state vector of the process Xα(t̃), the

law of total probability indicates that

sα(t̃) = αP ji(t̃)sα(0) = Eα(−Q̃t̃α)sα(0),

which is exactly the solution of the fractional equation (8).

G.3 Proof of Lemma 5.1.2

Proof. We know [18, sec. 3.4] that

Pr[min{T̃1, T̃2} ≤ t̃] = 1− Pr[{T̃1 > t̃} ∩ {T̃2 > t̃}].

The probability of the minimum of two events {T̃1 ≤ t} and {T̃2 ≤ t} equals the probability of the

union of those two events [18, sec. 2.4], because the minimum can only be smaller than t̃ if at least

one of the events is smaller than t̃,

Pr[min{T̃1, T̃2} ≤ t̃] = Pr[{T̃1 ≤ t̃} ∪ {T̃2 ≤ t̃}] = Pr[T̃1 ≤ t̃] + Pr[T̃2 ≤ t̃]− Pr[{T̃1 ≤ t̃} ∩ {T̃2 ≤ t̃}].

where the last equality follows from a general formula [18, eq. (2.4), p. 9] in probability theory. Then,

the definition of Y≤(t̃) in (35) indicates that

Y≤(t̃) = Pr[T̃1 ≤ t̃, T̃2 ≤ t̃]− Pr[T̃1 ≤ t̃] Pr[T̃2 ≤ t̃]

= Pr[T̃1 ≤ t̃] + Pr[T̃2 ≤ t̃]− Pr[{T̃1 ≤ t̃} ∪ {T̃2 ≤ t̃}]− (1− Pr[T̃1 > t̃])((1− Pr[T̃2 > t̃])

= 1− Pr[{T̃1 ≤ t̃} ∪ {T̃2 ≤ t̃}]− Pr[T̃1 > t̃] Pr[T̃2 > t̃]) (88)

Finally, with (88) and recalling (34), we obtain

Y≤(t̃) = 1− Pr[{T̃1 ≤ t̃} ∪ {T̃2 ≤ t̃}]− Pr[T̃1 > t̃] Pr[T̃2 > t̃])

= 1− Pr[min{T̃1, T̃2} ≤ t̃]− Pr[T̃1 > t̃] Pr[T̃2 > t̃])

= 1− 1 + Pr[{T̃1 > t̃} ∩ {T̃2 > t̃}]− Pr[T̃1 > t̃] Pr[T̃2 > t̃])

= Y>(t̃)

which holds for any value of t̃.

H Monte Carlo simulation of the fractional epidemic process

We simulate the process in Theorem 5.1.1 employing: (a) the semi-Markov property (20), (b) the

knowledge of the sojourn time distribution of each state (19) and (c) the fact that the transition prob-

abilities are given by the embedded Markov chain probabilities (18) of the corresponding Markovian
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ε−SIS process. The Monte Carlo simulation of the process consists on the repeating of two steps: (I)

the sampling of the state to which the process transitions from the embedded Markov chain distribu-

tion; and (II) the sampling of the sojourn time at which the transition happens from the sojourn time

distribution.

(I) Given the infinitesimal generator −Q̃ of the ε-SIS process on a given graph, we compute the

transition probabilities Vji of the related embedded Markov chain (40), and for each state i of the

process, we have a discrete probability distribution:

Pr[Xn+1 = j|Xn = i] = Vji,
N∑
j=1

Vji = 1, i, j = 1, ..., N,

which defines the conditional probability of the process transitioning from any state to any other state.

Therefore, if we generate a random number θ ∈ [0, 1] and then we compare θ with the sum of the

distribution Vji for fixed i:[
(0, V1i), (V1i, V1i + V2i), ..., (

N−1∑
j=1

Vji,
N∑
j=1

Vji = 1)

]
→ [1, 2, ..., N ],

we can sample in which state j the process moves one step forward in discrete time, according to

the distribution Vji. The first step is therefore enough to simulate a discrete Markov chain given the

infinitesimal generator −Q̃ and an initial state i with i = 1, ..., N .

(II) Given that the process in Theorem 5.1.1 is in continuous time, we also need to sample the

sojourn time τ̃i at which the transition occurs given the actual state of the process:

Pr[τ̃i > t̃] = 1− Fi(t̃), i = 1, ..., N, t̃ > 0.

To sample from the sojourn time distribution we employ the property of uniform distributed continuous

random variables which allows to sample from any continuous probability distribution [18, sec.3.2.1].

This method is usually called the inverse transform sampling method. Indeed, given a random number

ω ∈ [0, 1] and a probability distribution function FT (t̃) = Pr[T ≤ t̃], the random variable F−1
T (ω)

follows the same distribution as T . If the inverse of the distribution function is known, the method is

straightforward, else some numerical methods to compute F−1
T (ω) must be employed. In our case the

sojourn times follow a Mittag-Leffler distribution in (19)

Pr[τ̃k > t̃] = Eα(− ˜qkk t̃
α), k = 0, ..., N, t̃ > 0

and therefore we need to approximate the inverse distribution function numerically. Given the random

number ω, we employ the Brent–Dekker method [50] to numerically find the value of t̃ for which

FT (t̃)− ω = 0.

Starting from an initial state X(0) = X0, the steps (I) and (II) are repeated until the simulation

time t̃ reaches a given maximum Tmax or the steady state of the process. A trajectory {Xsample(t̃), 0 ≤
t̃ ≤ Tmax}, which is a single realization of the process, is obtained. Repeating the simulation Nsim

times the average trajectory, in the limit ofNsim → ∞, leads to an approximation of the real trajectory:

X(t̃) ≃ 1

Nsim

Nsim∑
i=1

X
(i)
sample(t̃). (89)
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I Microscopic Monte Carlo simulation of the fractional epidemic

process

To simulate the process described in Theorem 5.1.1 we can also sample the time of each new event

in the epidemics from the joint distribution (31). The next event in the simulation will then be the

fastest of all the sampled events and its corresponding time will be the minimum of the sampled times.

Let us consider a situation in which we have n competing processes. In order to perform the sampling

from the multivariate distribution we employ iteratively the definition of conditional probability:

Pr

[ n⋂
j=1

T̃j = t̃j

]
= Pr

[ n⋂
j=2

T̃j = t̃j |T̃1 = t̃1

]
Pr[T̃1 = t̃1]

= Pr[T̃1 = t̃1]
n∏

j=2

Pr

[
T̃j = t̃j |

j−1⋂
k=1

T̃k = t̃k

]

= Pr[T̃1 = t̃1]
n∏

j=2

Pr

[⋂j
i=1 T̃i = t̃i

]
Pr

[⋂j−1
k=1 T̃k = t̃k

]
= fT̃1

(t̃1)
n∏

j=2

fT̃1,...,T̃j
(t̃1, ..., t̃j)

fT̃1,...,T̃j−1
(t̃1, ..., t̃j−1)

= fT̃1
(t̃1)

n∏
j=2

(−1)j ∂j

∂t̃1...∂t̃j
Pr

[⋂j
i=1 T̃j > t̃j

]
(−1)j−1 ∂j−1

∂t̃1...∂t̃j−1
Pr

[⋂j−1
k=1 T̃j > t̃j

] (90)

The marginal densities are:

Pr

[
T̃j = t̃j |

⋂
k ̸=j

T̃k = t̃k

]
= fT̃j |T̃1,...,T̃j−1,T̃j+1,...,T̃n

(t̃1, ..., t̃j−1, t̃j+1, ..., t̃n)

=
fT̃1,...,T̃n

(t̃1, ..., t̃n)

fT̃1,...,T̃j−1,T̃j+1,...,T̃n
(t̃1, ..., t̃j−1, t̃j+1, ..., t̃n)

=

(−1)n ∂n

∂t̃1...∂t̃n
Pr

[⋂n
i=1 T̃i > t̃i

]
(−1)n−1 ∂n−1

∂t̃1...∂t̃j−1∂t̃j+1...∂t̃n
Pr

[⋂
k ̸=j T̃k > t̃k

] . (91)
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Employing (31) and (91), we are able to write the marginal distribution functions:

Pr

[
T̃j ≤ t̃j |

n⋂
k ̸=j

T̃k = t̃k

]
= FT̃j |T̃1,...,T̃j−1,T̃j+1,...,T̃n

(t̃j |t̃1, ..., t̃j−1, t̃j+1, ..., t̃n)

=

∫ t̃j

0
dt̃fT̃j |T̃1,...,T̃n

(t̃1, ..., t̃j−1, t̃, t̃j+1, ..., t̃n)

= −

∫ t̃j
0 dt̃ ∂n

∂t̃1...∂t̃j−1∂t̃∂t̃j+1...∂t̃n
Pr

[⋂
i ̸=j T̃i > t̃i, T̃j > t̃

]
∂n−1

∂t̃1...∂t̃j−1∂t̃j+1...∂t̃n
Pr

[⋂
k ̸=j T̃k > t̃k

]

= −
∂n−1

∂t̃1...∂t̃j−1∂t̃j+1...∂t̃n
(Eα(−

∑n
i=1 λit̃

α
i )− Eα(−

∑
k ̸=j λk t̃

α
k ))

∂n−1

∂t̃1...∂t̃j−1∂t̃j+1...∂t̃n
Eα(−

∑
k ̸=j λk t̃

α
k )

= 1−
∂n−1

∂t̃1...∂t̃j−1∂t̃j+1...∂t̃n
Eα(−

∑n
i=1 λit̃

α
i )

∂n−1

∂t̃1...∂t̃j−1∂t̃j+1...∂t̃n
Eα(−

∑
k ̸=j λk t̃

α
k )

(92)

The n-th derivative of the Mittag-Leffler can be written in a easier way employing the results in [15]:

∂n

∂t̃1 . . . ∂t̃n
Eα(−

n∑
i=1

λit̃
α
i ) = (−1)n

n∏
k=1

λk t̃
α−1
k

n∑
l=0

ql(α, 1, n)Eα,nα+1−l(−
n∑

i=1

λit̃
α
i ),

where ql(α, γ, n) are polynomials in α, γ of order n− l. From [15] we know the closed form expression

for the polynomials:

qj(α, γ,m) =
m∑
q=j

αm−qS(q)
m

q∑
n=j

Γ(2− γ)
(
n
j

)
S(n)
q

Γ(j − n− γ + 2)
,

where S
(q)
m and S(n)

q are the Stirling numbers of the first and second kind [51, Sec. 24.1.3 and 24.1.4]

respectively. It follows that (92) is simplified as:

FT̃j |T̃1,...,T̃j−1,T̃j+1,...,T̃n
(t̃j |t̃1, ..., t̃j−1, t̃j+1, ..., t̃n) = 1−

∑n−1
l=0 ql(α, 1, n− 1)Eα,(n−1)α+1−l(−

∑n
i=1 λit̃

α
i )∑n−1

r=0 qr(α, 1, n− 1)Eα,(n−1)α+1−r(−
∑n

k ̸=j λk t̃
α
k )

.

The probability (90) becomes therefore:

Pr

[ n⋂
j=1

T̃j = t̃j

]
= fT̃1

(t̃1)

n∏
j=2

fT̃j |T̃1,...,T̃j−1
(t̃j |t̃1, ..., t̃j−1) =

= λ1t̃
α−1
1 Eα,α(−λ1t̃

α
1 )

n∏
j=2

λj t̃
α−1
j

∑j
l=0 ql(α, 1, j)Eα,jα+1−l(−

∑j
i=1 λit̃

α
i )∑j−1

r=0 qr(α, 1, j − 1)Eα,(j−1)α+1−r(−
∑j−1

k=1 λk t̃
α
k )

.

Knowing the related distributions:

FT̃j |T̃1,...,T̃j−1
(t̃j |t̃1, ..., t̃j−1) = 1−

∑j−1
l=0 ql(α, 1, j − 1)Eα,(j−1)α+1−l(−

∑j
i=1 λit̃

α
i )∑j−1

r=0 qr(α, 1, j − 1)Eα,(j−1)α+1−r(−
∑j−1

k=1 λk t̃
α
k )

we are thus able to sample from the joint (31). Each random variable T̃i can be sampled employing

the inverse transform sampling method in the following way: (1) sample t̃1 from Pr[T̃1 ≤ t̃1]; (2)
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sample t̃2 from Pr[T̃2 ≤ t̃2|T̃1 = t̃1] using the t̃1 sampled in the previous step in the conditional

distribution; (j) do the same as in step (2) employing all the previous samples t̃1, ..., t̃j−1 to sample

from Pr[T̃j ≤ t̃j |T̃1 = t̃1, ..., T̃j−1 = t̃j−1]. The simulation of the epidemic process is therefore given by

the repetition of the following step: given the current nodal state of the system Xcurr and the current

time t̃curr, the next state of the system Xnew is given by updating Xcurr according to which node gets

infected or cured first. Which event happens first is determined by the sampling of the time of the new

event t̃new from (31): the minimum minj∈Sα(Xcurr){T̃j} returns t̃new, while the argminj∈Sα(Xcurr){T̃j}
returns which of the competing curings and infections happens faster. The update of simulation is

therefore:

Xcurr

argminj∈Sα(Xcurr)
{T̃j}

−−−−−−−−−−−−−−→ Xnew

t̃curr
minj∈Sα(Xcurr){T̃j}−−−−−−−−−−−−→ t̃curr + t̃new,

and given the semi-Markov nature of the process we can repeat the step until a maximum time

Tmax or until the process reaches the steady state. Repeating the simulation many times we can

therefore obtain the average evolution of the prevalence which can be compared with the solution of

the corresponding fractional equation (8).

Figure 12: Evolution of the prevalence in the α-fractional extension of the ε-SIS process on a complete

graph with N = 3 nodes, 1 initial infected node, β = 0.1, δ = 1 and ε = 6 · 10−8. The time axis is

in log-scale. The full line is the prevalence computed from the solution of equation (8). The circles

represent the average outcome of the 2000 Monte Carlo simulations with Tmax = 104 of the process

defined in Theorem 5.1.1.

In Figure 12 we observe that the physical epidemic process defined in Theorem 5.1.1 correctly

describes the epidemic process defined by (8) when −Q̃ is the infinitesimal generator of the ε-SIS

process on a network. Compared to the method proposed in Section H, the Monte Carlo simulation
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proposed in this section is way slower and prone to errors due to the very complicated structure of

the marginal joint distributions (92).
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