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Abstract—It is important that our vital networks (e.g., infras-
tructures) are robust to more than single-link failures. Failures
might for instance affect a part of the network that resides
in a certain geographical region. In this paper, considering
networks embedded in a two-dimensional plane, we study the
problem of finding a critical region - that is, a part of the
network that can be enclosed by a given elementary figure (a
circle, ellipse, rectangle, square, or equilateral triangle) with a
predetermined size - whose removal would lead to the highest
network disruption. We determine that there is a polynomial
number of non-trivial positions for such a figure that need to
be considered and, subsequently, we propose a polynomial-time
algorithm for the problem. Simulations on realistic networks
illustrate that different figures with equal area result in different
critical regions in a network.

Index Terms—geographical failures, critical regions, network
robustness, computational geometry

I. INTRODUCTION

Link and node failures in vital infrastructures, such as

communication, power grid [1], transportation or mobile [2]

networks may be caused unintentionally, for instance due

to (aged) equipment failure, power failure [1], or natural

disasters [3], or intentionally [4], [5], for example by terrorist

attacks or cyber criminals. Attacks or natural disasters often

affect a certain geographical area. For instance, devastations

from the 2012 catastrophic hurricane “Sandy” in the US

stretched from the East Coast to the Lake Area [3]. Similarly,

electromagnetic pulses (EMP) might be more stretched than

circular in nature [6]. Consequently, failure areas cannot

always be sufficiently accurately approximated by circular

shapes, as often considered in papers on regional failures

(e.g., [7]) and require taking into consideration more two-

dimensional figures, such as ellipses, rectangles, and triangles.

We use the term critical region to denote the position of

a predetermined two-dimensional figure, for which the failure

of all nodes and their incident links covered by that figure will

affect the performance of the network most. In this paper, we

study the problem of finding critical regions of various shapes

in a network.

Our main contributions can be summarized as follows:

• We prove that only a polynomially bounded number of

figure positions (for circles, ellipses, squares, rectangles,

and equilateral triangles) need to be considered for find-

ing a critical region;

• We propose a polynomial-time algorithm for detecting

critical regions for the aforementioned figures;

• We determine the impact of a critical region failure in

real-world networks for different figures of equal area.

In general, the level to which connectivity can be maintained

under failures has typically been used as the main metric to

characterize network robustness (see [8] for an overview). An

other way of robustness characterization is by employing prob-

abilistic graph percolation theory [9]. Robustness of networks

against geographical circular failures has been studied by

Neumayer et al. [7], [10]. Regarding network flow problems,

Sen et al. [11] have studied region-disjoint paths constrained

by fixed and predetermined critical regions. While most papers

confine to the circular failure model, in this paper we consider

several types of two-dimensional figures to represent a regional

failure.

The remainder of this paper is organized as follows. Our

formal model and problem statement are defined in Section II.

In Section III we reduce the, in principle, infinite size of

the search space of possible locations for the figures to a

search space of polynomial size and provide an accompanying

algorithm for detecting critical regions. Section IV identifies

and studies critical regions in real-world networks. Concluding

remarks are given in Section V.

II. MODEL AND PROBLEM STATEMENT

We start with a presentation of our network model and the

problem considered.

Model: We represent a network as a weighted (directed or

undirected) graph G(N ,L) in a plane consisting of a set N
of N nodes and a set L of L links. Each node i ∈ N has

two-dimensional coordinates (xi, yi). The Euclidean distance

between two nodes u and v is denoted by d(u, v). The weight

of a link (i, j) ∈ L is denoted by w(i, j). The weight may

reflect the distance, but it could also reflect another metric

such as link capacity.

We define the critical region C(F , X) to be a region covered

by the position of the figure F in the two-dimensional plane

for which the removal of all nodes in that area, and the links

incident to them, leads to a maximum deterioration in a certain

network metric X . The network metric X could for instance

represent the number of affected nodes, the average shortest

path length, the number of connected node pairs, the size of

the giant component, or some service function like packet loss

or average delay. There might be multiple critical regions that

affect the metric X to the same degree.

We will consider several figures as shown in Fig. 1,

including the circle FC (O(xj , yj), ϕ, r) with radius r, el-

lipse FE (O(xj , yj), ϕ, a, b) with semi-axes lengths a and

b, square FS (O(xj , yj), ϕ, a) with side length a, rectangle

FR (O(xj , yj), ϕ, a, b) with side lengths a and b, and the



2

equilateral triangle FT (O(xj , yj), ϕ, a) with side length a.

Indeed, the ellipse with equal axes is a circle and a rectangle

with equal sides is a square. In the remainder, we use the term

dimensions to refer to radii or sides in general.

To characterize the position of a figure, we should determine

its center O(xj , yj) and orientation ϕ, which is the angle

(0 ≤ ϕ ≤ 2π) between the x-axis and an axis of symmetry

in the figure as shown in Fig. 1. The orientation of a circle

FC (O(xj , yj), ϕ, r) is irrelevant as any rotation applies.

Critical region problem: For a given network G(N ,L)
embedded in a plane, find a critical region C(F , X) with

respect to network metric X and two-dimensional figure

Ffig (O(xj , yj), ϕ, dim), where dim is the vector of dimen-

sions that defines Ffig , fig ∈ {C, E ,S,R, T }.
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Fig. 1: (a) circle FC (O(xj , yj), ϕ, r); (b) ellipse

FE (O(xj , yj), ϕ, a, b); (c) square FS (O(xj , yj), ϕ, a);
(d) rectangle FR (O(xj , yj), ϕ, a, b); and (e) equilateral

triangle FT (O(xj , yj), ϕ, a).

III. CRITICAL REGION DETECTION

We first demonstrate that finding critical regions of a given

two-dimensional figure is polynomially solvable for the figures

in Fig. 1.

A. Theoretical basis

In this section, we use three kinds of geometric transforma-

tions defined in Definition 1.

Definition 1: Translation of a figure is moving it in parallel

to a given line (e.g., the x-axis in Fig. 2a). Rotation of a figure

([12]) along a given node assures that the distance between a

point on the perimeter of the figure and that node remains the

same (Fig. 2a). Finally, we define sliding along two nodes as

moving the position of the figure such that these two nodes

still lie on the perimeter of the figure. The sliding differs for

different figures as visualized in Fig. 2.

Theorem 1: For the five figures given in Fig. 1, if there

exists a two-dimensional figure that covers a set of nodes S,

then that same set S could also be covered by the same type

of figure that passes through at most 3 nodes.
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Fig. 2: (a) Translation and Rotation, illustrated for the ellipse;

Sliding through A and B for: (b) an ellipse; (c) an equilateral

triangle; (d) a rectangle if A and B lie on perpendicular sides;

(e) a rectangle if A and B lie on parallel sides; and (f) a

rectangle if A and B lie on a same side.

Proof: We start from an arbitrary two-dimensional figure

F . We will consider three positions for this figure, denoted -

for ease of notation - by F (i), for i = 0, 1, 2, 3, with F (0) the

initial position of the figure in which it covers all the points

in S . If there is no node that lies on the perimeter of F (0),

then one can translate F (0) parallel to the x-axis until (at

least) one node A ∈ S hits the perimeter as exemplified in

Fig. 2a. We denote the position of this figure by F (1) and

it still contains all the nodes in S. If A is the only node in

S on the perimeter of F (1), we rotate, either clock-wise or

counter-clock-wise until (at least) one node B ∈ S , different

from A, hits the perimeter as shown in Fig. 2a. Denoting the

position of this figure by F (2), one can slide F (2) until at least

one more node C ∈ S lies on the perimeter of F (2). Sliding
is always possible for the considered figures, as illustrated in

Fig. 2. The resulting position F (3) still contains all nodes in

S and is characterized by (at most) three nodes. Sliding of
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Fig. 3: (a) rectangle with two nodes on the same side and

one the perpendicular side; (b) rectangle with two nodes on

parallel sides and one the perpendicular one; (c) two crucial

positions for a rectangle for collinear nodes (there is a similar

case for a triangle); (d) two crucial position for a rectangle

for “quasi-collinear” nodes; (e) triangle with two nodes on

the same side; (f) triangle with three nodes on different sides.

a circle always maps to the same circle, thus two nodes are

already enough to characterize the circle.

For the following Theorem 2, we introduce the terms

collinear and “quasi collinear.” A set of nodes is collinear
if and only if a single line can pass through all the nodes.

Three nodes are “quasi collinear” if and only if one of them

is on a distance a or b (reflecting the dimensions of the figure)

from the line through the two other nodes.

Theorem 2: The positions of critical ellipses, rectangles and

equilateral triangles can be uniquely characterized by three

nodes, unless the nodes are collinear for the triangle and the

rectangle or “quasi collinear” for the rectangle.

Proof: The proof relies on the figure equations from

analytic geometry [12], [13] and appropriate case analysis

and can be found in Appendix A. Crucial possibilities are

visualized in Fig. 3.

In Theorem 2 collinear or “quasi collinear” nodes were ex-

cluded. If a figure covers some set of collinear nodes and at

least one node that is not collinear to them, this case will

be examined by a figure through the non-collinear node and

two other nodes. If there is a set of collinear nodes (even

with cardinality greater than 3) that could be covered by some

position, but no other non-collinear node can form a figure

with them, then it is enough to consider two crucial positions:

where one of the two “end nodes” lies in a corner of the figure

and all the other nodes are positioned on a single side (Fig. 3c).

Similarly, for “quasi collinear” nodes, two crucial positions

have to be examined (Fig. 3d). Fortunately, these cases are

special instances for when two nodes lie: (i) on a same side for

collinear (Fig. 3a) or (ii) on parallel sides for “quasi collinear”

(Fig. 3b) and one node is on the perpendicular side. They

therefore do not require extra consideration.

B. Polynomial-time algorithm for detecting critical regions

As shown in Theorem 2, at most three points are needed to

define a given figure. Finding the centers and the orientations

(or the corners) of a certain figure requires constant time O(1).
There are

(
N
3

)
triples of nodes and for each triple needs to

consider all possible figures through this triple. If a certain

node pair (or isolated node) cannot form a figure with any

of the other nodes, then the algorithm for critical region

Algorithm 1: FINDCRITICALREGION

input : the network G(N ,L), figure F , metric X
output: critical region(s) C, metric after a failure minVal

1 C ← ∅;

2 minVal ← ∞;

3 foreach node triple {A,B,C} ⊆ N do
4 if (F �= ellipse and {A,B,C} are collinear) then
5 Q ← two positions for F such that one node is

in the corner and all three are on the same side;

6 else
7 Q ← all positions for F through A, B and C;

8 foreach q ∈ Q do
9 G′ ← G(N ,L);

10 foreach N ∈ N do
11 if N ∈ q then G′ ← G′ −N ;

12 RELAXCRITICAL(G′, X, q,minVal, C);

13 foreach isolated node pair {A,B} ⊆ N do
14 G′ ← G′ −A; G′ ← G′ −B;

15 RELAXCRITICAL(G′, X, q,minVal, C);
16 foreach isolated node A ∈ N do
17 G′ ← G′ −A;

18 RELAXCRITICAL(G′, X, q,minVal, C);

Algorithm 2: RELAXCRITICAL

input : modified network G′, the network metric X ,

region considered q, current minimum minVal,
critical region(s) C.

output: current minimum minVal, critical region(s) C.

1 Y ← CALCULATEMETRIC(G′ ,X );

2 if Y < minVal then /* new critical region */

3 C ← q;

4 minVal ← Y ;

5 else if Y = minVal then /* another critical region */

6 C ← C ∪ q

detection considers a figure arbitrarily positioned through these

nodes. The time-complexity of this part is O(N3). If the

complexity of determining the change in the value of a metric
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after the failure of a considered region is O(C), then we have

a complexity of O(N3 · C). Checking whether a single node

lies inside a positioned figure can be done in O(1) time. The

total complexity accumulates to O(N4 · C). The algorithm

is formalized in FINDCRITICALREGION (Algorithm 1). Rou-

tine RELAXCRITICAL (Algorithm 2) is used to calculate the

change in network metric X in modified network G′ and to

update the set of critical regions C.

IV. SIMULATION RESULTS

In this section, we conduct simulations to study how certain

metrics are affected after the failure of a critical region.

For the five figures under consideration, we detect critical

regions in three real-world networks: the infrastructure of

the ARPANET network [14] (in Fig. 4a), which is often

used as a benchmark topology, the Italian main backbone

network (in Fig. 4b), and the main backbone fiber connections

in Europe [15] (in Fig. 4c). We refer to these networks

as: ARPANET, ITALY, and EUROPE, respectively. Through

longitude and latitude information, the geographical distances

between the nodes can be derived.

In ARPANET, the most critical square and circular regions

are those covering the west and east coast, while the most

critical stretched figures are located in central USA, because

the nodes centered there link the US coasts. In ITALY, the

most critical regions are positioned in the northern part of the

country; however, the stretched figures touch a part of central

Italy. For EUROPE, for a relatively small size of the figure,

the most critical regions are situated near London.

For the same networks, we have also examined the change

in two network metrics after the failure of a critical region,

namely: (1) the number of disconnected pairs and (2) the

average shortest path length for the five different figures. The

distance control variable (r) is used, such that for a given r the

areas of different figures are the same. Fig. 5 shows that for

both metrics the network is not affected equally for different

figures. Generally, for the number of disconnected pairs the

most critical region is more disruptive for the equilateral

triangle and the stretched ones (ellipse and rectangle) than

for the circle and the square (Figs. 5a, 5b and 5c).

In particular, for the average shortest path length in

ARPANET (Figs. 5a and 5d), where there are distant nodes

and the most dense areas in terms of nodes are not central,

the most critical region is more disruptive for the equilateral

triangle and the stretched figures (ellipse and rectangle), than

for the circle and the square. The same holds for the number of

disconnected pairs. Somewhat similar behavior is noticed for

ITALY (Figs. 5b and 5e). On the other hand, for the average

shortest path length in EUROPE (Figs. 5c and 5f), where

there is a very dense region (United Kingdom), apart from

the equilateral triangle, the square and the circle are more

disruptive than the stretched figures. Indeed, when extremely

large regions are considered (large r in Fig. 5), the metric

values for different figures become more similar as most of

the nodes in the networks are affected in all cases.
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Fig. 4: For the 5 figures, the critical regions (possibly multiple)

as a function of the number of disconnected pairs. The area

of each figure per map is the same: (a) 300020.55 km2; (b)

16895.36 km2 and (c) 27906.96 km2. The stretched ellipse

(rectangle) has one semi-axis (side) nine times longer than

the other.

V. CONCLUSION

This paper has considered the problem of finding critical

network regions as a function of several two-dimensional
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Fig. 5: The number of disconnected pairs (a), (b), (c) and the average shortest path length (d), (e), (f), with r in km, for: circle

with radius r, ellipse with semi-axes a = 3r, b = r/3, square with sides a = r
√
π, rectangle with sides a = 3r

√
π, b = r

√
π/3

and equilateral triangle with sides a = 2r
√
π

4√3
. For the same r, the areas of the figures are equal in each network.

figures, namely: the circle, stretched ellipse, square, stretched

rectangle and equilateral triangle.

First, we have proved that the number of potential locations

of critical regions that need to be examined is polynomially

bounded by the number of nodes N . Subsequently, we have

proposed a polynomial-time algorithm for finding the critical

regions for a generic network metric.

We have used our algorithm to study the critical regions

in three real-world networks by finding the critical regions

for a certain figure size. The results show that the equilateral

triangle and the stretched figures might be more disruptive

than the “centralized” ones when the number of disconnected

pairs is chosen as measure for criticality. However, in networks

where there is a very dense region, the circular and the square

regions are more disruptive than the stretched regions when

the average shortest path length is taken as metric.
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APPENDIX

A. proof of Theorem 2

Let us denote the three considered nodes by A (xA, yA),
B (xB , yB) and C (xC , yC).

1) Ellipse E: The equation of an ellipse with semi-axes
lengths a and b, center O(xj , yj) and orientation ϕ is given
by

(x cos(ϕ)− y sin(ϕ)− xj)
2

a2
+

(x sin(ϕ) + y cos(ϕ)− yj)
2

b2
= 1 (1)

Having three nodes A, B and C that fulfill equation (1) leads
to a system of 3 equations with three unknowns: xj , yj and
ϕ. Subtracting equations (1) for A, B & A, C and expanding
in terms of xj and yj results in

2b2((xA − xm) cos(ϕ)− (yA − ym) sin(ϕ))xj

+ 2a2((xA − xm) sin(ϕ) + (yA − ym) cos(ϕ))yj

= b2[((xA − xm) cos(ϕ)− (yA − ym) sin(ϕ))×
((xA + xm) cos(ϕ)− (yA + ym) cos(ϕ))]

+ a2[((xA − xm) sin(ϕ) + (yA − ym) cos(ϕ))×
((xA + xm) sin(ϕ) + (yA + ym) cos(ϕ))] (2)

where m ∈ {B,C}. (2) forms a system of two equations with
two unknowns, treating ϕ as a constant. Finding the solutions
(e.g., by calculating determinants), we obtain

xj =
M3(cos (ϕ) , sin (ϕ))

K2(cos (ϕ) , sin (ϕ))
, yj =

N3(cos (ϕ) , sin (ϕ))

K2(cos (ϕ) , sin (ϕ))
(3)

where K2(cos (ϕ) , sin (ϕ)), M3(cos (ϕ) , sin (ϕ)) and

N3(cos (ϕ) , sin (ϕ)) are homogeneous polynomials in cos(ϕ)
and sin(ϕ) of degree 2, 3 and 3, respectively. Using (3) in

(1), for instance for node C, results in an equation of ϕ.

After expanding, we end up with a homogeneous polynomial
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in cos(ϕ) and sin(ϕ) of degree 6. The last equation

consists of terms sini (ϕ) cos6−i (ϕ) for i = 0, 1, . . . , 6.

We take all the terms with i even on one side and all

the terms with i odd on the other. For the even terms:

sin2l (ϕ) cos6−2l (ϕ) =
(

1−cos(2ϕ)
2

)l (
1+cos(2ϕ)

2

)3−l

for

l = 0, 1, 2, 3 and for the odd terms sin2l+1 (ϕ) cos5−2l (ϕ) =
sin(2ϕ)

2

(
1−cos(2ϕ)

2

)l (
1+cos(2ϕ)

2

)2−l

for l = 0, 1, 2. Finally,

squaring both sides and using sin2 (2ϕ) = 1 − cos2 (2ϕ)
results in an equation of degree 6, solely in cos (2ϕ). The

last can be solved numerically. Because of the squaring, we

need to check whether the solution holds in (1). Finally, we

obtain the solution via equation (3).
2) Rectangle FR: There are two possible cases for a

rectangle with sides lengths a and b (Figs. 3a and 3b):

(i) Two nodes (e.g., A and B) lie on the same side and the

third (node C) on a perpendicular side as shown in Fig 3a.

The intersection of those sides defines one corner P . Another

corner Q is determined such that it lies on the line through A
and B and the distance between P and Q is t ∈ {a, b}. Finally,

we find corners R and T to be on an appropriate distance b
or a from P and Q. Additional checks whether A, B and C
lie internally on the sides of rectangle �PQTR have to be

performed (not only on the lines). In addition, two other pairs

may lie on parallel sides and together with the two possibilities

of t, sums up to 6 potential solutions (and 3 for square).
(ii) Two nodes (e.g., A and B) lie on parallel sides, and

the third (node C) on a perpendicular side to those sides as
shown in Fig. 3b. Now, the equations of lines through A, B
and C are: y = kA (x− xA) + yA, y = kA (x− xB) + yB
and y = − 1

kA
(x− xC) + yC , respectively. In this case,

kA is not directly known. Corner P is found as the in-
tersection of the lines through A and C, while corner R
as the intersection of the lines through B and C. Hence,

xP =
xAk2

A+(yC−yA)kA+xC

k2
A+1

, yP = kA(xP − xA) + yA and

xR =
xBk2

A+(yC−yB)kA+xC

k2
A+1

, yR = kA(xR − xC) + yC . Now,

because |PR| = t ∈ {a, b}, we end up with the equation

((xA−xB)2− t2)k2A+2(xA−xB)(yB−yA)kA+(yB−yA)2− t2 = 0

Because there might be two real values of kA and two values

for t, there are at most 4 possibilities for kA. When we find

a certain kA, P and R are already determined and Q and T
are found on appropriate distances (a or b) from P and R.

Because, other pairs of nodes (A, C or B, C) might lie on

parallel sides, we have another 8 solutions, hence 12 (6 for

the square) in total for case (ii). Finally, we have 18 cases to

be checked for the rectangle (and 9 for the square).
3) Equilateral Triangle FT : For an equilateral triangle,

there can also be two possibilities (Figs. 3e and 3f):

(i) Two nodes (e.g., A and B) lie on the same side in the

rectangle and the third (node C) on a different side as shown

in Fig. 3e. There are two possibilities for the slope of the

line through C as it closes an angle of π
3 or 2π

3 with the line

through A and B. One corner P is found in the intersection.

Corners Q and R are determined on a distance a from P . One

needs to check whether A, B and C lie internally on the sides

of �PQR. Because we have 2 solutions in this case and there

can be 3 possible pairs of nodes that lie on the same side, we

have 6 potential solutions.
(ii) Nodes A, B and C lie on different sides as depicted in

Fig. 3f. Assuming that the angle between the lines through
A and B is π

3 and between the lines through A and C

is 2π
3 , we obtain kB = kA+

√
3

1−
√
3kA

, kC = kA−
√
3

1+
√
3kA

. Now,

we can find corners P and Q as intersections of the lines
through A and B and through A and C, respectively: xP =
xAk2

A+
(
yB−yA+

xB−xA√
3

)
kA+

(
xB+

yA−yB√
3

)

k2
A+1

, yP = kA(xP − xA)

+yA and xQ =
xAk2

A+
(
yC−yA+

xA−xC√
3

)
kA+

(
xC+

yC−yA√
3

)

k2
A+1

, yQ =

kA (xQ − xA) + yA. The length of PQ is a, which leads to
a quadratic equation in kA

(
m2 − a2) k2

A + 2mnkA +
(
n2 − a2) = 0 (4)

where m = (yB − yC) +
xB+xC−2xA√

3
and n = (xB − xC) +

yB+yC−2yA√
3

. After kA and subsequently, kB and kC are

known, corners P and Q are immediately found. The last

corner R is determined as intersection of the lines through

B and C. Finally, we need to check whether P , Q and R lie

on the sides of the triangle. Because of the assumptions for

the angles choice (π3 or 2π
3 ) and the two possible solutions

in (4), we have 4 solutions in total. Based on (i) and (ii), we

have 10 cases for an equilateral triangle.
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