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Abstract

Communication between brain regions is still insufficiently understood. Applying con-

cepts from network science has shown to be successful to gain insight in the functioning

of the brain. Recent work has implicated that especially shortest paths in the structural

brain network seem to play a major role in the communication within the brain. So

far, for the functional brain network, only the average length of the shortest paths has

been analyzed. In this paper, we propose to construct the union of shortest path trees

(USPT) as a new topology for the functional brain network. The Minimum Spanning

Tree, which has been successful in a lot of recent studies to comprise important features

of the functional brain network, is always included in the USPT. After interpreting the

link weights of the functional brain network as communication probabilities, the USPT

of this network can be uniquely defined. Using data from magnetoencephalography, we

applied the USPT as a method to find differences in the network topology of multiple

sclerosis patients and healthy controls. The new concept of the USPT of the functional

brain network also allows interesting interpretations and may represent the ”highways”

of the brain.
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1 Introduction

Analyzing the brain as a complex network has become an often used approach in modern

neuroscience and has led to new insights concerning brain disorders (Bullmore and Sporns,

2009; Bullmore and Sporns, 2012). Recently, the shortest paths between brain regions were

found crucial to understand functional networks in terms of structural networks (Goñi et al.,

2014) and pathological network alterations in brain diseases. Structural or functional brain

networks in patients with neuropsychiatric diseases are often characterized by a reduced global

efficiency, which is proportional to the inverse of the shortest paths. However, the shortest

paths of the functional brain network have merely been analyzed with regard to their average

length. Using all shortest paths as an alternative topology for the functional brain network is

a new approach.

Several sampling methods on functional brain networks set a threshold or fix the link density

to thin the complete weighted graph. However, these methods have disadvantages: the choice

of the a priori chosen threshold or link density is often arbitrary and, in addition, different link

densities can lead to different results (van Wijk et al., 2010). Constructing the Minimum Span-

ning Tree (MST) of the functional brain network has provided insight in the differences between

patients suffering from brain disorders and healthy controls in a lot of recent studies (Wang

et al., 2010; van Dellen et al., 2014; Tewarie et al., 2014b; Dubbelink et al., 2014; Stam, C.J.

et al., 2014). An advantage of the MST lies in its independence of the transformation of the

weights as long as their ranking is unaltered. There exists only one unique path from a node

to another node in the MST, which limits more advanced analysis.

Analyzing shortest paths is a common practice after reducing the complete graph of the

functional brain network with any of the existing sampling methods. Bullmore and Sporns sug-

gested that the brain is always trying to reduce material and metabolic costs when transporting

information (Bullmore and Sporns, 2012). Thus, the concept of shortest paths fits into the cur-

rent understanding of the brain function. Extracting all shortest paths of the original complete

graph can be interpreted as focusing on the ”backbone” or the main functional ”highways” of

the brain network. We intend to represent the most important connections of the functional
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brain network based on global network properties, not only on the ranking of the link weights

among each other.

In the present study, we propose the union of shortest path trees (USPT) as a new sam-

pling method for the functional brain network. This sampling method has been successfully

applied before on a variety of complex networks (Van Mieghem and Wang, 2009). To construct

the USPT, we first identify the shortest path tree rooted at each node in the network. The

shortest path tree rooted at a node consists of all shortest paths from this node to all the other

nodes (Van Mieghem and Magdalena, 2005). The union of all shortest paths from a single node

to the rest of the network always results in a tree (Van Mieghem, 2011b). Furthermore, we can

unite these shortest path trees to obtain the union of shortest path trees (USPT) G∪spt of our

network G (Van Mieghem and Wang, 2009). The union of shortest path trees is determined

by the topology of the underlying network and its link weight structure (the set of weights on

the links in G) (Van Mieghem and Wang, 2009). Furthermore, if all link weights equal 1, the

USPT is the same as the underlying network because all information then flows over the direct

pathways between the nodes.

The properties of the USPT have been analyzed in various studies (Van Mieghem and

Magdalena, 2005; Van Mieghem and Wang, 2009). The USPT, not the underlying network,

determines the network’s performance (Van Mieghem and Wang, 2009). Another important

property of the USPT is that it always includes the MST (Van Mieghem and Wang, 2009)(see

Figure 1). The regime, where the USPT coincides with the MST is called the strong disorder

regime, the counterpart is the weak disorder regime (Van Mieghem and Magdalena, 2005;

Van Mieghem and van Langen, 2005). In the strong disorder regime, all traffic in the network

follows only links in the MST, while in the weak disorder regime, a transport may follow other

paths. Analogous to the flow of electrical current, we may regard the strong disorder regime

as the superconductive phase, whereas the weak disorder corresponds to the resistive phase,

where electrons follow many paths between two different voltage points.

In many real-world networks, the information is assumed to flow over the shortest path to

optimize transportation costs. The derivation of G∪spt can be regarded as a filter for the weights
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Figure 1: Visualization of a complete network with its corresponding USPT and MST.

that are not important for the overall transportation flow in the brain. By reducing the network

to the union of its shortest paths, only those paths are maintained which have a high probability

that information is transported along them. The topology of G∪spt represents the ”highways”

of the brain. The goal of this paper is to evaluate and apply this USPT sampling method to

the functional brain network and to find first differences between patients and healthy controls.

In the following, we will interpret the link weights of the functional brain network as com-

munication probabilities and based on this interpretation, we will construct and analyze the

USPT. We will examine the results of this new USPT sampling method by using empirical data

from healthy controls and multiple sclerosis (MS) patients and demonstrate that the USPT is

sensitive to disease alterations and that our USPT method can be used to discriminate between

healthy and pathological conditions.
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2 Materials and Methods

2.1 Data Acquisition

In this section, we explain the reconstruction of functional brain networks from our MEG mea-

surements. Our data set consisted of 68 healthy controls and 111 multiple sclerosis patients,

which is a larger but overlapping group as in (Tewarie et al., 2014a; Tewarie et al., 2014b).

Details with regard to data acquisition and post-processing can be found in our previous pa-

per (Tewarie et al., 2014b). In short, MEG data were recorded using a 306-channel whole-head

MEG system (ElektaNeuromag, Oy, Helsinki, Finland). Fluctuations in magnetic field strength

were recorded during a no-task, eyes-closed condition for five consecutive minutes. A beam-

former approach was adopted to project MEG data from sensor space to source space (Hille-

brand et al., 2012). This beamformer approach can be regarded as a spatial filter that computes

the activity within brain regions based on the weighted sum of the activity recorded at the MEG

channels. We then used the automated anatomical labelling (AAL) atlas to obtain time-series

for 78 cortical regions of interest (ROIs) (Gong et al., 2009; Tzourio-Mazoyer et al., 2002). For

each subject, we chose 5 artifact-free epochs of source space time-series (Tewarie et al., 2014b;

van Dellen et al., 2014; Dubbelink et al., 2014). Six frequency bands were analyzed: delta

(0.5− 4 Hz), theta (4− 8 Hz), lower alpha (8− 10 Hz), upper alpha (10− 13 Hz), beta (13− 30

Hz), and lower gamma bands (30− 48 Hz).

Subsequently, for each epoch and frequency band separately, we computed the Phase Lag

Index (PLI) between all time-series of the 78 ROIs to obtain the link weights for our functional

brain networks (Stam, C.J. and Van Straaten, 2012; Stam, C.J. et al., 2007). The PLI can take

values between 0 and 1 and is a measure that captures phase synchronization by calculating the

asymmetry of the distribution of instantaneous phase differences between time-series. Formally,

the PLI is defined as

PLI = |〈sign[sin (∆Φ(tk)])〉|, (1)

where ∆Φ(tk), for k = 1, ...,m; m ∈ N, is the time-series of phase differences evaluated for time

steps t1, ..., tm, 〈·〉 denotes the average and | · | the absolute value. High values of the PLI refer
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to a strong interaction or synchronization between two time-series while avoiding bias due to

volume conduction.

As a next step, for each epoch we constructed an N × N weight matrix W with elements

wij, each representing the PLI of the pair of regions i and j. This symmetric weight matrix W

can be interpreted as a complete weighted graph on N nodes (N = 78). Lastly, we averaged

over all 5 weight matrices belonging to each epoch to obtain one weight matrix per person and

to ensure independent samples for statistical testing. All further mentioned weight matrices in

this paper refer to matrices with PLI values as entries.

2.2 Link weights in functional brain networks as communication

probabilities

A network can be represented by a graph G consisting of N nodes and L links. Each link

l = i→ j from node i to j in G can be specified by a link weight wl = wij = w(i→ j). Assume a

path from a node A to node B in our network G. We denote this path by PA→B = n1n2...nk−1nk

with hopcount (sometimes also called the length) k ∈ N, where n1 = A, nk = B and n2, . . . , nk−1

represent the distinct nodes along the path (Van Mieghem, 2014). The weight of a path PA→B

is usually defined as

w(PA→B) =
∑

l∈PA→B

wl (2)

The shortest path P∗A→B between A and B equals that path that minimizes the weight

w(PA→B) over all possible paths from A to B, hence, w(P∗A→B) ≤ w(PA→B). The effi-

cient Dijkstra algorithm to compute the shortest path requires that link weights are non-

negative (Van Mieghem, 2011a). If the link weights are real, positive numbers, in most cases

– though not always –, the shortest path P∗A→B is unique. Other definitions of the weight

of a path are possible (Van Mieghem, 2011a, Ch. 12), such as w(PA→B) =
∏

l∈PA→B
wl or

w(PA→B) = minl∈PA→B
wl. Here, we will deduce a new definition of the weight of a path,

particularly geared to functional brain networks.

The PLI, defined in (1), is an approximation of the probability of phase synchronization
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between time-series. Therefore, we can interpret the PLI as the communication probability

between two nodes in the functional brain network. The PLI also implies symmetry in the

communication direction so that wij = wji and we further confine ourselves to undirected links.

With this interpretation, the link weight wij = w(i ↔ j) between node i and j represents the

probability that the end nodes i and j are communicating or that information is transmitted

over this ”functional” link. The PLI assigns a high link weight to strongly communicating

nodes. Likewise, low values of the PLI represent low probabilities that the end nodes are

communicating. The weight of a path between brain region A and B can then be interpreted

as

w(PA→B) = Pr[information is transported along the path PA→B]

= Pr[every link in PA→B transports the information]

= Pr[
⋂

l∈PA→B

link l transports information].

In order to proceed, we assume independence between different link weights so that

Pr[
⋂

l∈PA→B

link l transports information] =
∏

l∈PA→B

Pr[ link l transports information].

Introducing our interpretation of the link weights in the functional brain network as communi-

cation probabilities,

wl = wij = Pr[link i↔ j transports the information],

we find the weight of the path between A and B

w(PA→B) =
∏

1≤i≤k−1

wnini+1
. (3)

The assumption of independence between the link weights is debatable. Identifying the de-

pendency structure, thus the correlations between the different links in the functional brain
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network, is a complex task. Here, we approximate all link weights, as being independent of

each other, and we thus ignore correlations.

Between any pair of nodes A and B in our network, we identify the path with the high-

est probability of successful communication between these two nodes, which is the path that

maximizes w(PA→B) in (3). The path between node A and B, which maximizes w(PA→B), is

defined as the shortest path P∗A→B between the two nodes. Since 0 ≤ wij ≤ 1 by the definition

(1) of the PLI, we rewrite (3) as

w(PA→B) = exp

( ∑
1≤i≤k−1

lnwnini+1

)
= exp

(
−

∑
1≤i≤k−1

| lnwnini+1
|

)
. (4)

and observe that maximizing w(PA→B) is equal to minimizing the sum of the transformed

link weights −
∑

1≤i≤k−1 lnwnini+1
. Consequently, Dijkstra’s shortest path algorithm can be

used after transforming the weights vij = − ln(wij) for all 1 ≤ i, j ≤ N . This transformation

approach is often used in computer networks (see e.g. p. 313 in (Van Mieghem, 2011a)).

As mentioned earlier, there are different link weight transformations apart from the inter-

pretation of the link weights as communication probabilities. A basic transform is a polynomial

link weight transformation vij = (wij)
α, like e.g. in (Van Mieghem and Magdalena, 2005) and

(Braunstein et al., 2007). Interestingly, we can rephrase our probabilistic approach in terms of

the polynomial link weight transformation as

vij = − lnwij =
d

dα
(exp (−α lnwij))

∣∣∣
α=0

=
d

dα

(
w−αij

) ∣∣∣
α=0

.

where α can be regarded as an extreme value index of the link weight distribution (Van Mieghem,

2014, Chapter 16). When α < αc, the USPT operates in the strong disorder regime and all

information flows over the MST, whereas, for α > αc, information traverse more links in the

USPT. The critical value αc can be associated with a phase transition in the graph’s link

weight structure, for which we refer to (Van Mieghem and van Langen, 2005; Van Mieghem

and Magdalena, 2005; Van Mieghem and Wang, 2009).
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frequency band p-value

delta 0.0245∗

theta < 0.001∗

alpha1 0.3297
alpha2 0.0902
beta 0.0588
gamma 0.2907

Table 1: P-values for the two-sample t-test for differences in mean link density of the USPT
(under the link weight transformation vij = − ln(wij)) between MS patients and controls for
all frequency bands.

3 Results

After constructing the USPT of the functional brain network under the link weight transfor-

mation vij = − ln(wij), we can analyze the resulting link densities of the different USPTs.

The mean and the standard deviation of the number of links in the USPT are plotted for the

different frequency bands in Figure 2. We can infer from Figure 2 that, on average, the number

of links needed for the USPT does not differ much over all frequency bands except that the

alpha1- and alpha2-band seem to have a lower mean link density of their USPT than all the

other frequency bands. Overall, the mean link density of the USPT varies between 98.27% and

99.98%, which is too dense to obtain a meaningful visualization of the resulting network.

Furthermore, we tested the differences in mean link density between MS patients and con-

trols with a two-sample t-test. We found that MS patients have on average a significantly

lower link density than healthy controls in the theta and delta frequency band under the 5%

significance level (see Table 1).

4 Discussion

Unlike the MST method where the number of links L = N − 1, we found that the USPT of the

functional brain network has a specific link density, so that the number of links L in the USPT

is different for different brain networks. The difference in the number of links influences graph

metrics, but the number of links itself informs us about the spread of transport in the brain. The
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Figure 2: Plot of the mean value of the link density in the USPT and an error bar of length
twice the standard deviation for healthy controls and MS patients over different frequency
bands under the link weight transformation vij = − ln(wij).
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links in the USPT are those links over which the information is flowing. Thus, the link density

in our method is not fixed arbitrarily, but emerges as a property of the underlying transport or

communication structure. Hence, the difference in link densities contain meaningful information

about the brain network topology and performance. A nearly complete graph, as the USPT here

with relatively low standard deviation, shows that this path weight interpretation belongs to

the weak disorder regime (Van Mieghem and van Langen, 2005; Van Mieghem and Magdalena,

2005). Thus, the information in the functional brain network seems to flow over more links

than just the MST topology. Moreover, the high link density shows that the communication

flow in the functional brain network is probably spread across nearly all possible connections.

A high link density in the USPT means that, in most cases, the direct communication between

two brain regions is preferred. Thus, the length (or hopcount) of the shortest path is overall

short, which confirms the assumption that the functional brain network operates as a ”small

world” (Bullmore and Sporns, 2009).

In the probabilistic approach to generate the USPT, no a priori parameter nor link weight

threshold needs to be fixed arbitrarily. Besides the interpretation of the shortest path as a

communication channel, the only assumption in this approach is that all links (and link weights)

are independent. A disadvantages of the USPT sampling method lies in the dependence on

the chosen link weight transformation. However, our link weight transformation arises as a

consequence of the interpretation of the link weights, measured by the PLI, as communication

probabilities and is therefore not arbitrarily chosen.

The observation, that the link density in the USPT for patients is nearly always lower on

average than the link density for healthy controls, shows that MS patients seem to have less

links for brain communication. Therefore, the average path length becomes longer and, thus,

the communication within the functional brain network less effective.

On nearly the same data set, a more classic network analysis has been performed in (Tewarie

et al., 2014b). One of the findings in (Tewarie et al., 2014b) was that for MS patients, there

has been a higher mean PLI value in the delta and theta frequency band and a lower mean

PLI value in the alpha2 frequency band. The higher mean PLI value in the delta and theta
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band seems to align with our results of a lower link density for the USPT for patients. The

correlation between the overall mean of the link weight distribution and the USPT is not yet

clear and needs to be investigated in future research. Additionally, for the theta band, the

other study (Tewarie et al., 2014b) found patients to have a significantly higher (normalized)

path length in their functional brain network, which implies a more regular topology for patient

networks. Since a larger normalized path length also indicates a larger path length in the USPT

and, equivalently, a lower link density in the USPT, this finding agrees with our current study

in the theta band.

To sum up, we found that our USPT method picks up most of the differences found in a

previous study between MS patients and controls. Overall, this previous study (Tewarie et al.,

2014b) found significant differences for the functional brain network between MS patients and

controls in 3 frequency bands, delta, theta and alpha2 with the help of conventional network

analysis and testing the overall mean PLI values against each other. The performed MST

analysis on the same data set seemed to only find the differences in the alpha2 band (Tewarie

et al., 2014b) and provides meaningful interpretation for those differences concerning the overall

integration of communication that seems to be disrupted in MS patients. Our USPT method

enlarges the analysis and incorporates the differences in the remaining frequency bands, the

delta and theta band. For these frequency bands, the USPT method can enhance our insight

concerning the overall communication in the functional brain networks of MS patients. In

another study, Goñi and coworkers (Goñi et al., 2014) applied the same link weight transfor-

mation, vij = − lnwij, to the structural brain network without giving further rationale for

this specific transform. Furthermore, (Goñi et al., 2014) also confirmed that the shortest path

weights calculated under the link weight transformation vij = − lnwij play a major role in

brain network communication. Our article provided a detailed argument why the vij = − lnwij

transform is a reasonable choice for the link weights of the functional brain network and showed

that the topology of the resulting shortest paths can be used to differentiate between patients

and healthy controls.
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5 Conclusion

We found statistically significant differences between MS patients and controls while analyzing

the link density of their USPT under the link weight transformation vij = − ln(wij) derived

from the interpretation of the link weights as independent communication probabilities. Those

differences were found in the same frequency bands as in a previous study on a similar data

set (Tewarie et al., 2014b). As a conclusion of our findings, we propose the USPT under the

link weight transformation vij = − lnwij as a new sampling method for extracting differences

between the functional brain networks of patients and healthy controls. The interpretation

of the link weights as communication probabilities leads to an USPT of the functional brain

network that includes all important links of the global brain communication.
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Appendix

A Link weight distribution of the functional brain net-

work

In this section, we analyze the link weight distribution of the functional brain network since

the USPT does depend directly on the underlying link weight distribution (Van Mieghem and

Magdalena, 2005). If we analyze the histogram of the link weights per frequency band, Figure 3

and 4 illustrate that (after averaging over 5 epochs) the accumulated link weight histogram for

the delta frequency band and alpha1 frequency band seem to follow a Gamma distribution.
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Figure 3: Histogram of all the link weights (after averaging over 5 epochs) from all PLI matrices
of the delta frequency band of all 68 healthy controls.
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Figure 4: Histogram of all the link weights (after averaging over 5 epochs) from all PLI matrices
of the alpha1 frequency band of all 68 healthy controls.
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