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a b s t r a c t

Many network topology measurements capture or sample only a partial view of the actual
network structure, which we call the underlying network. Sampling bias is a critical prob-
lem in the field of complex networks ranging from biological networks, social networks
and artificial networks like the Internet. This bias phenomenon depends on both the sam-
pling method of the measurements and the features of the underlying networks. In RIPE
NCC and the PlanetLab measurement architectures, the Internet is mapped as G[mspt , the
union of shortest paths between each pair of a set M of m testboxes, or equivalently, m
shortest path trees. In this paper, we investigate this sampling method on a wide class
of real-world complex networks as well as on the weighted Erdös–Rényi random graphs.
This general framework examines the effect of the set of testboxes on G[mspt . We establish
the correlation between the subgraph GM of the underlying network, i.e. the set M and the
direct links between nodes of set M, and the sampled network G[mspt . Furthermore, we
illustrate that in order to obtain an increasingly accurate view of a given network, a higher
than linear detection/measuring effort (the relative size m=N of set M) is needed, where N
is the size of the underlying network. Finally, when the relative size m=N of set M is small,
we characterize the kind of networks possessing small sampling bias, which provides
insights on how to place the testboxes for good network topology measurement.

! 2009 Elsevier B.V. All rights reserved.

1. Introduction

Topologies of complex networks ranging from biologi-
cal networks such as gene regulatory networks [1], meta-
bolic networks [2], artificial networks like the Internet,
the WWW to social networks, e.g. paper citations and col-
laboration networks [3], have been accumulated by active
investigation in recent years. However, many surveyed
networks to date are, in fact, subnets of the actual network,
which we call the ‘‘underlying network”. For example, only
a subset of the molecular entities in a cell have been sam-
pled in protein interaction, gene regulation and metabolic
networks. The topology of the Internet is inferred by aggre-
gating paths, which reveals only a part of the whole Inter-

net. Thus, these identified networks are sampled networks
of the underlying networks according to different mapping
or sampling methods.

In this work, we study the bias phenomenon of a sam-
pling method that originated from the Internet. The topol-
ogy of the Internet has typically been measured by the
union of sampling traceroutes [4], which are approxi-
mately shortest paths. Mainly two sampling methods
exist: (a) The topology is built from the union of tracero-
utes from a small set of sources to a larger set of destina-
tions as in the CAIDA skitter project [5] . The sampled
map can be modeled as the union of the spanning trees
rooted at the sources. (b) The traceroute measurements
are carried out between each pair of a setM ofm testboxes
or testbeds. The sampled network, denoted as G[mspt ; is the
union of m shortest path trees SPTs, where each SPT is the
union of shortest paths from the root 2 M to the other
m! 1 testboxes 2 M. Equivalently, G[mspt is the union of
shortest paths between each node pair in the set M of m
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testboxes. The RIPE NCC [6] and the PlanetLab [7] measure-
ment architectures are examples of this type. The method-
ology in (a) has been argued and even proved to introduce
such intrinsic biases that statistical properties of the sam-
pled topology may sharply differ from that of the underly-
ing graph (see e.g. [8–10]). While most related works on
Internet exploration have been devoted to the sampling
method (a), we investigate the other sampling method
(b). Although the number of destinations may be limited
to the number m of measurement boxes, the spurious ef-
fects in (a), where nodes and links closer to the sources
are more likely to be sampled than those surrounding the
destinations, can be reduced.

With statistical and graph theory methodologies, we
investigate this sampling method (m shortest path trees)
on a wide class of networks: the weighted Erdös–Rényi
random graphs, which represent dense and homogeneous
networks, and the unweighted real-world complex net-
works which are generally sparse and inhomogeneous
graphs. Various underlying networks are investigated, be-
cause network sampling is a generic problem residing in
various disciplines and the actual underlying network
topology is mostly uncertain. Here, we focus on the sam-
pling bias (the incompleteness of the network mapping)
introduced purely by the sampling method. Technical lim-
itations in the topology measurements may also introduce
significant sampling bias. For example, the network mea-
sured by traceroute represents the interconnections of IP
addresses. The bias in mapping the router level Internet
topology depends highly on the alias resolution technique,
which maps IP addresses to the corresponding routers [11].
Such specific technical concerns, which vary in the mea-
suring of different complex networks, are not explored in
this paper.

The sampled network G[mspt depends on the set M of m
boxes as well as the underlying network. In this work, we
focus on the effect of the testboxes, in particular, (1) the
subgraph GM of the underlying network, consisting of the
set M and the direct links between nodes of set M, and
(2) the relative size m=N of set M, where N is the size of

the underlying network. With a given set of testboxes,
the sampling bias varies for different networks. The kind
of networks with small sampling bias will also be briefly
mentioned in this paper.

The main contributions of this study can be summa-
rized as follows:

1. Introduction of a general framework for network sam-
pling on both weighted and unweighted complex
networks.

2. Establishment of the correlation between the intercon-
nections of set M, i.e. the subgraph GM, and the sam-
pled network G[mspt .

3. Illustration of the detection/measuring effort (the rela-
tive size m=N of set M) to obtain an increasingly accu-
rate view of a given network.

4. Characterization of networks bearing small sampling
bias when m=N is small and the corresponding proposal
of testbox placement for good network topology
measurements.

2. Modeling the sampling process of large networks

Assuming that traceroutes used in RIPE NCC and the
PlanetLab are shortest paths, the sampled topology is then
the union G[mspt of shortest paths between each pair of a
small group of m " N nodes, while the number of nodes
in the underlying graph N is much larger. When m ¼ N,
the graph G[mspt becomes G[spt , the union of all shortest
paths between any node pair. G[spt is thus the maximal
measurable or observable part of a network by traceroute
measurements [12]. It is also regarded as the ‘‘transport
overlay network” [13]. In the Internet, for example, all
the traffic is carried along the overlay G[spt , a fraction of
the links in the underlying network. An example to repre-
sent the relation between the sampled overlay network
G[mspt , the overlay network G[spt and the underlying graph
(or substrate) is shown in Fig. 1. The robustness of net-
works, e.g. the persistence of epidemics [14] and the vul-

Underlying Topology G(N,L)

Overlay Network         :
union of shortest paths between 
all node pairs.

Sampled Overlay Network 
: union of shortest paths 

between each pair of a set M of 
m nodes.

set M

m sptG∪

sptG∪G

Fig. 1. The relation between the sampled overlay network, the overlay network and the underlying graph.
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nerability to node failures and attacks [15] are depending
on structural properties of G[spt . Hence, the sampling bias
refers to the difference between the sampled overlay
G[mspt and the overlay network G[spt . We show in Section
4 that the sampling bias can be quantitatively character-
ized by E½Lmspt %

E½Lo % , where Lmspt and Lo are the number of links
in G[mspt and G[spt . When the underlying graph is un-
weighted networks, the overlay network is equal to the
underlying graph G[spt ¼ GðN; LÞ, because each link ði; jÞ in
GðN; LÞ is the shortest path between node i and j.

2.1. Substrates: networks to be sampled

We consider two classes of substrates: the weighted
Erdös–Rényi random graph GpðNÞ and real-world complex
networks that are unweighted.

The Erdös–Rényi random graphs GpðNÞ can be generated
from a set of N nodes by randomly assigning a link with
probability p to each pair of nodes. Besides their analytic
tractability, the Erdös–Rényi random graphs [16] have also
served as idealized structures for peer-to-peer networks
[17], ad hoc networks [18], gene networks and ecosystems
[19]. Other network models, such as power law graphs
[20], which are random graphs specified by a power law
degree distribution Pr½D ¼ i% ¼ ci!s, are usually sparse.
The sampling via G[mspt of a sparse network is the same
no matter whether this network is weighted or not, be-
cause paths between any node pair are likely unique.
Hence, in the class of the weighted networks, we consider
the Erdös–Rényi random graph GpðNÞ, which is dense. We
assign to each link an i.i.d. uniform link weight within
[0,1]. A link weight may represent e.g. the delay, the dis-
tance and the monetary cost. Apart from being attractive
in a theoretical analysis, the uniform distribution on [0,1]
is the underlying distribution to generate an arbitrary
other distribution and is especially interesting for com-
puter simulations. Hence, this distribution appears most
often in network simulations and deserves – for this reason
alone perhaps – to be studied. Furthermore, the shortest
path problem is mainly sensitive to the smaller link
weights, especially in a dense network. Statistical proper-
ties of the shortest paths remain asymptotically the same
when the network is equipped with i.i.d. regular1 link
weights [21], e.g. uniform or exponential distributed link
weights, which may capture the link weight features in
many real networks. Thus, the uniform distribution is much
less restrictive than it appears at the first glance. All the links
are assumed undirected.

We also consider the unweighted real-world networks
which represent the topology of various complex systems.
Some of these networks possess a power law degree distri-
bution, a feature that is claimed in many complex net-
works. Most of the data sets we have used are available
publicly. They are complex networks from a wide range
of systems in nature and society:

( the Gnutella [22] snapshots (Crawl2) retrieved from
firewire.com;

( the air transportation network representing the world
wide airport connections, documented at the Bureau of
Transportation Statistics (http://www.bts.gov) database,
and the connection between United States airports [23];

( the Western States Power Grid of the United States[24];
( the coauthorship network [25] between scientists post-

ing preprints on the High-Energy Theory E-Print Archive
between Jan 1, 1995 and December 31, 1999;

( the citation network [26] created using the Web of Sci-
ence database: Kohonen [27];

( the coauthorship network [28] of scientists working on
network theory and experiment;

( the network representing soccer players association to
Dutch soccer team [29];

( the adjacency network [28] of common adjectives and
nouns in the novel David Copperfield by Charles
Dickens.

A network is connected if there exists a path between
each pair of nodes. We consider only the networks formed
by the largest connected component of our real-world
networks.

2.2. The overlay network G[spt on top of the weighted Erdös–
Rényi random graph GpðNÞ

A uniform recursive tree URT grows from its root and at
each stage a new node is attached uniformly to one of the
existing nodes. The overlay network G[spt is also the union
of shortest path trees2 SPTs rooted at each node. In [30], a
URT is shown to be asymptotically the SPT in the Erdös–
Rényi random graph GpðNÞwith link density p above the dis-
connectivity threshold pc )

logN
N and with regular link weight

distribution, e.g. uniform or exponential distribution. We
first review an interesting result about the degree DG[spt of
an arbitrary node in the overlay G[spt , which is derived from
the URT modeling.

Theorem 1. For large N, the degree distribution in the
overlay G[spt on top of the Erdös–Rényi random graph
GpðNÞ with link density p above the disconnectivity threshold
pc and equipped with i.i.d. regular link weights is

Pr½DG[spt ¼ k% ¼
ð!1ÞN!1!kSðkÞN!1

ðN ! 1Þ!
; ð1Þ

where SðkÞN is the Stirling number of the first kind [31].

Proof. See [12]. h

If a link in the underlying graph belongs to the overlay
network G[spt , it is said to be detected or observed in the
overlay network.

Theorem 2. In the Erdös–Rényi random graph GpðNÞ with
link density p above the disconnectivity threshold pc, large N

1 A regular link weight distribution FwðxÞ ¼ Pr½w 6 x% has a Taylor series
expansion around x ¼ 0; FwðxÞ ¼ fwð0Þxþ Oðx2Þ, since Fwð0Þ ¼ 0 and
F 0wð0Þ ¼ fwð0Þ exists. A regular link weight distribution is thus linear
around zero.

2 The shortest path tree is the union of shortest paths from the root to all
the other nodes in the network.
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and equipped with i.i.d. regular link weights, the probability of
a link to be detected in the overlay G[spt is equal to

Pr½P+
i!j ¼ i ! j% ¼ Pr½HN ¼ 1% ¼ 1

N ! 1

XN!1

n¼1

1
n
; ð2Þ

where P+
i!j is the shortest path between i and j and HN is the

hopcount of a shortest path.

Proof. Any link i ! j with link weight wði ! jÞ in the G[spt

must be the shortest path between i and j because a link in
the G[spt must belong to a shortest path and a subsection of
a shortest path is also a shortest path. Reversed, if a link
i ! j is the shortest path between i and j, it must belong
to the G[spt , because the G[spt is the union of shortest paths
between all possible source and destination pairs. There-
fore, the event that a link i ! j is observed in the G[spt is
equivalent to the event fP+

i!j ¼ i ! jg that the link i ! j is
the shortest path P+

i!j between i and j. Hence, Pr½P+
i!j ¼

i ! j% is also the probability that a link can be detected in
the overlay G[spt .

The event fP+
i!j ¼ i ! jg is equal to the event fHN ¼ 1g

that the hopcount of the shortest path is 1. Hence,
Pr½P+

i!j ¼ i ! j% ¼ Pr½HN ¼ 1% and Pr½HN ¼ 1% ¼ 1
N!1

PN!1
n¼1

1
n

has been derived in [21, Section 16.6.3]. h

The average number of links in G[spt , or the average ob-
servable links via G[spt is

E½Lo% ¼
NðN ! 1Þ

2
Pr½P+

i!j ¼ i ! j%

¼ N
2

XN!1

n¼1

1
n
’ N

2
ðlnN þ cÞ; ð3Þ

where c ¼ 0:57721 . . . is the Euler constant.

3. Effect of GM on the sampled overlay G[mspt

Recall that a network is mapped as G[mspt , the union of
shortest paths between each pair of a setM ofm testboxes.
The overlay network G[spt is the union of the shortest paths
between all node pairs. We examine first the effect of GM

on the sampled overlay G[mspt when the underlying net-
work or substrate is a weighted Erdös–Rényi random

graph. As shown in Fig. 2, the subgraph GM of a underlying
network GðN; LÞ is the set M and the direct links between
nodes of set M. The maximal observable part of the sub-
graph GM is the overlay network G[spt upon GM. It is now
denoted as G[sptðmÞ to include the number of nodes in
the overlay network and G[sptðmÞ , GM . The sampled over-
lay G[mspt and the overlay G[sptðNÞ are constructed based on
the shortest paths computed in the underlying network
GðN; LÞ while the overlay G[sptðmÞ on the subgraph GM is
based on the shortest path computation in the subgraph
GM. Similar to the overlay G[sptðmÞ, the sampled network
G[mspt is also the union of shortest path between each node
pair of the set M, however, upon the underlying network
GðN; LÞ instead of upon the subgraph GM. We now examine
the similarity or difference between G[sptðmÞ and G[mspt .

Each simulation on Erdös–Rényi random graphs con-
sists of 104 iterations. Within each iteration, a set M of
m ¼ 40 nodes is uniformly chosen out of the generated
substrate G0:6ð200Þ and an i:i:d:uniform link weight is as-
signed to each link. Shortest paths are computed by the
Dijkstra’s algorithm [32]. We construct three networks
(a) the sampled overlay G[mspt and (b) the overlay G[sptðNÞ
on top of the underlying graph GðN; LÞ and (c) the overlay
G[sptðmÞ on the subgraph GM. The degree distributions of
these three networks are displayed in Fig. 3 . We denote
DM as the degree of set M in the sampled overlay G[mspt .
The degree distribution of DM is much closer to the degree
distribution of the overlay G[sptðmÞ on top of GM than that
of the overlay G[sptðNÞ. Beside the set M, the other nodes in
the sampled overlay G[mspt belong to set I. The degree dis-
tribution DI of set I performs even worse to represent the
overlay G[sptðNÞ as compared to set M.

We further investigate the resemblance in degree distri-
bution between DM and the overlay G[sptðmÞ on the sub-
graph GcalM over more Erdös–Rényi random graphs:
G0:2ð400Þ and G0:2ð800Þ with different size m of the set
M. Fig. 4 illustrates that the set M in the sampled overlay
G[mspt and the overlay G[sptðmÞ upon GM possess almost the
same degree distribution. The degree distribution of the
overlay G[sptðm ¼ 10;20;50Þ upon GM is calculated based

on Theorem 1, using Pr½DG[spt ðmÞ ¼ k% ¼ ð!1Þm!1!kSðkÞm!1
ðm!1Þ! . It seems

that Pr½DM ¼ k% ¼ Pr½DG[spt ðmÞ ¼ k%. The degree distribution

G(N,L)

()sptGN∪

msptG∪

spt( )G m∪spt( )G N∪

Gm

Fig. 2. Sketch of the sampled overlay G[mspt and the overlay G[sptðNÞ on top of the underlying graph GðN; LÞ and the overlay G[sptðmÞ on the subgraph GM .
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of the setM in the sampled overlay G[mspt is independent of
the size N of the underlying network: the set M follows a
same degree distribution in G[msptðN ¼ 400Þ;G[msptðN ¼
800Þ and G[msptðN ¼ mÞ ¼ G[sptðmÞ. Hence, we claim the fol-
lowing conjecture:

Conjecture 3. Consider the sampled overlay graph G[mspt on
top of anErdös–Rényi random graph GpðNÞwith link density p
above the disconnectivity threshold pc and equipped with i.i.d.
regular link weights. The degree distribution of DM of setM in
the sampled overlay graph G[mspt is independent of the size N
of the network and

Pr½DM ¼ k% ¼ Pr½DG[spt ðmÞ ¼ k% ¼
ð!1Þm!1!kSðkÞm!1

ðm! 1Þ!
:

As presented in Appendix A, two extreme cases
Pr½DM ¼ 1% and Pr½DM ¼ m! 1% can be proved. The Conjec-
ture 3 states that the degree distribution of the set M is
independent of the size of the underlying topology, but
only of the number m of measurement nodes in M. This
‘‘intermediate node invariant” degree property could be
used, in principle, to reduce or infer GðN; LÞ and the link
weight structure. In other words, if the so measured
G[sptðmÞ statistically has the same degree distribution as
the set M of G[mspt , the network is possibly homogeneous
and equipped with i.i.d. regular link weights.

On top of a dense homogeneous network equipped with
i.i.d. regular link weights, the set M of the sampled overlay
network well reflects the local overlay G[sptðmÞ on top of a

0.25

0.20

0.15

0.10

0.05

0.00

Pr
[D

 =
 j]

1412108642

degree j

 set M in G mspt  on top of G p (N)
 set I in G mspt  on top of G p (N)
 Guspt (m) on top of subgraph G M

 Guspt (N) on top of G p(N)

Fig. 3. Degree distribution of (a) the sampled overlay G[mspt upon G0:6ð200Þ (b) overlay G[sptðNÞ upon G0:6ð200Þ and (c) overlay G[sptðmÞ upon the subgraph
GM , where m ¼ 40.

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Pr
[D

 =
 k

]

1412108642
Degree k

 N = 400, m = 10
 N = 400, m = 20
 N = 400, m = 50
 N = 800, m = 10
 N = 800, m = 20
 N = 800, m = 50
  G∪spt(m = 10)
  G∪spt(m = 20)
  G∪spt(m = 50)

Fig. 4. Degree distribution DMðNmsptÞof set M.
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subgraph GM in the degree distribution, althoughm " N. It
seems that the testboxes, i.e. the subgraph GM (or, equiva-
lently, G[sptðmÞ upon the subgraph GM) do effect the sam-
pled overlay G[mspt in the degree distribution of set M.
The Erdös–Rényi random graph is homogenous and so is
the subgraph GM . Hence, the resemblance in degree distri-
bution between DM and the overlay G[sptðmÞ may originate
from the fact that both G[sptðmÞ and G[mspt take into account
the union of mðm! 1Þ=2 shortest paths.

In a real-world unweighted network, the overlay net-
work G[sptðNÞ is equal to the substrate GðN; LÞ and the over-
lay network G[sptðmÞ on top of subgraph GM is GM itself. For
unweighted networks, we have

GM ¼ G[sptðmÞ , G[mspt , G[sptðNÞ ¼ GðN; LÞ;

where G[sptðmÞ , G[mspt is due to the fact that any link ði; jÞ
in an unweighted graph is the shortest path between its
end nodes i and j. The structure of G[mspt varies between
GM and the substrate GðN; LÞ. Hence, the subgraph GM is
correlated with the sampled network G[mspt , in the sense
that GM ¼ G[sptðmÞ , G[mspt . As a larger proportion of the
substrate is observed, the sampled overlay G[mspt resembles
the underlying network G[sptðNÞ ¼ GðN; LÞ more.

4. Effect of the relative size m=N of the testboxes on the
sampling bias

In this section, we first explain why E½Lmspt %=E½Lo% quan-
tifies the sampling bias well. Then, we investigate the ef-
fect of the relative size m=N of the testboxes on the
sampling bias. Given the ratio m=N, the sampling bias dif-
fers for various networks depending on their topologies.
We will briefly discuss which type of network tends to pos-
sess small sampling bias.

4.1. Characterizing the sampling bias by E½Lmspt %=E½Lo%

The sampling bias refers to the difference between the
sampled overlay G[mspt and the overlay network G[spt . The
relation G[mspt , G[sptðNÞ holds for both weighted Erdös–
Rényi random graphs and unweighted networks. Hence,
the ratio of the average number of links in the G[mspt and
G[spt ; E½Lmspt%=E½Lo% can reasonably well characterize3 the
sampling bias of a network, where E½Lo% ¼ L in case the net-
work is unweighted.

First, Fig. 7 in Appendix B shows that the probability
distribution of the normalized number of links L+mspt ¼
Lmspt!E½Lmspt %

r½Lmspt % and the normalized number of nodes
N+

mspt ¼
Nmspt!E½Nmspt %

r½Nmspt % in G[mspt are both close to the Gaussian
distribution Nð0;1Þ. Moreover, their average and standard

deviation, which determine the distribution, follow
rðLmsptÞ " E½Lmspt% and rðNmsptÞ " E½Nmspt% as illustrated in
Figs. 8 and 9 in Appendix B. Hence, the random variables
Lmspt and Nmspt are close to their mean E½Lmspt % and E½Nmspt%,
which are thus the appropriate quantities to be studied.

Furthermore, we investigate the sampling bias via
E½Lmspt %=E½Lo% instead of the number of nodes E½Nmspt%=N.
The relation between E½Nmspt% and E½Lmspt % follows from the
basic law of the degree:

Xm

j¼1

dj2M þ
XNmspt

j¼mþ1

dj2I ¼ 2Lmspt:

Taking the expectation yields

m - E½DM% þ E
XNmspt

j¼mþ1

dj2I

" #
¼ 2E½Lmspt%:

Assume that Nmspt and dj2I are only weakly dependent such
that we may apply Wald’s identity [21, Chapter 1],

2E½Lmspt% ’ m - E½DM% þ ðE½Nmspt% !mÞ - E½DIðNmsptÞ%

or

E½Lmspt% ’
1
2
E½DIðNmsptÞ% - E½Nmspt% þ

m
2
ðE½DM% ! E½DIðNmsptÞ%Þ:

ð4Þ

Under the assumption of weak dependence between
Nmspt and dj2I, a linear relation exists between E½Lmspt % and
E½Nmspt % with slope equal to E½DIðNmsptÞ%=2, where
E½DIðNmsptÞ% is a function of m. For example, we consider
the substrate G0:2ð800Þ equipped with i.i.d. uniformly
distributed link weights. The left and right sides of (4)
are shown to be almost the same in the table below, which
justifies the weak dependency assumption.

4.2. Sampling of the weighted Erdös–Rényi random graph

The average number of links in the SPT rooted at a
source to m uniformly chosen nodes in the complete graph
KN , or approximately in GpðNÞ, with uniform link weights is
given in [21, Chapter 17],

gNðmÞ ¼ mN
N !m

XN

k¼mþ1

1
k
’ mN

N !m
log

N
m

: ð5Þ

Hence, the number of links in each of the mSPTs of G[mspt is,
on average, equal to gNðm! 1Þ. The maximum number of
links that can be detected in case m ¼ N via G[spt is
E½Lo%given by (3). Since Lmspt is not decreasing inm, we have
that

gNðm! 1Þ 6 E½Lmspt% 6 E½Lo%

and

E½Lmspt% 6 m - gNðm! 1Þ:

m 10 20 30 40 50 60 100 300

Left side of (4) 124.4 308.3 479.6 630.6 762.6 881.4 1242.6 2111.7
Right side of (4) 124.6 308.6 479.6 630.6 763.4 881.1 1244 2117.2

3 E½Lmspt %=E½Lo % is a statistical property which takes into account different
realizations of the set M selection as well as the link weight assignment.
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Hence, for large N,

ðm! 1ÞN
N !mþ 1

log
N

m! 1
6 E½Lmspt% 6

N
2
ðcþ ln NÞ:

The ratio E½Lmspt%=E½Lo% quantifies the sampling bias, while
the ratio E½Lmspt%=ðm - gNðm! 1ÞÞ reflects the extent of over-
lap between these mSPTs. As shown in Fig. 5, for the sub-
strate G0:2ð800Þ and m ¼ 60, 30% of links in G[spt have
already been observed. For m ¼ 120, about 40% links are
discovered. Indeed, for any network, the larger m is, the
smaller the sampling bias is, because limm!NG[mspt ¼
G[sptðNÞ. For N ¼ 800, the ratio E½Lmspt%=E½Lo% ¼ OðmbÞ with
b . 0:23, which implies that ‘‘the discovering rate of new
links” decreases with m. In other words, to obtain an
increasingly accurate view of the network, a higher detec-
tion/measuring effort is needed, in fact, much higher than
proportional. Since E½Lmspt %=E½Lo% ¼ OðmbÞ, we found via
simulation that the exponent b increases with N. When
A ¼ m

N ! 0, the shortest paths between nodes of set M sel-
dom overlap,

E½Lmspt% ’
m
2

! "
E½HN % ¼

A2N2

2
E½HN%:

Using (3) and [21, Section 16.3], we have

E½Lmspt%
E½Lo%

’
A2N2

2 E½HN %
NðN!1Þ

2 po

’
A2N2

2 ðln N þ cÞ
N
2 ðln N þ cÞ

¼ A2N;

where c ¼ 0:57721 . . . and po is the link density of the over-
lay G[spt . Hence, for a small m=N, large networks tend to
have a small sampling bias or large E½Lmspt%=E½Lo%. Moreover,
a sparse overlay network characterized by a small po tends
to have a small sampling bias, as observed in real-world
complex network sampling in Section 4.3.

4.3. Sampling of the real-world complex networks

On top of each real-world network mentioned in Sec-
tion 2.1, we increase the size of the set M from m

N ¼ 5%
to m

N ¼ 35% with a step size of 5%. Given m
N, each simulation

consists of 40 realizations 4 of the random selection of set

M. The average proportion of links E½Lmspt%=L discovered in
the corresponding sampled overlay G[mspt is plotted as a
function of m

N in Fig. 6. Similar to the weighted Erdös–Rényi
random graph, to obtain an increasingly accurate view of
the network, a higher than linear detection/measuring effort
m=N is needed.5

With a given proportion m=N of uniformly distributed
testboxes in a network, the sampling bias E½Lmspt %=L de-
pends purely on the topology of the network. We compare
the topology features of each real-world complex network
in Table 1 to see which kind of network tends to possess a
small sampling bias. We computed the following topolog-
ical metrics for each network, which are considered rele-
vant in the networking literature [33]:

( The number of nodes N and links L.
( Average degree E½D% ¼ 2L=N and link density p ¼ L

N
2

! ".

( The average hopcount (in number of links) and the larg-
est hopcount hmax of the shortest paths between all node
pairs. The latter hmax is also referred to as the diameter of
a graph. Actually, we assign independently to each link a
unit link weight plus a small uniform random variable
within ! 1

N ;
1
N

# $
, such that a unique shortest path is found

between each node pair.
( The clustering coefficient of a node cGðvÞ characterizes

the density of connections in the environment of a node
v and is defined as the ratio of the number of links y con-
necting the dv > 1 neighbors of v over the total possible
dv ðdv!1Þ

2 , thus cGðvÞ ¼ 2y
dv ðdv!1Þ. The clustering coefficient

CðGÞ of a graph is the average of the clustering coeffi-
cient of nodes whose degree is larger than 1, given as
CðGÞ ¼ 1

N!jNð1Þ j

P
v2N!Nð1ÞcGðvÞ, where N is the set of all

nodes and Nð1Þ is the set of degree 1 nodes.

Table 1 presents the topological metrics of the real com-
plex networks, in the decreasing order of their correspond-
ing E½Lmspt%=L at m=N ¼ 5% as shown in Fig. 6. Recall that a
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Fig. 5. The ratio E½Lmspt %=E½Lo% and the power exponent b in the corresponding curve fitting E½Lmspt %=E½Lo% ¼ aþ bmb , where the substrate is G0:2ðNÞ.

4 20 or 10 iterations are carried out for large networks with N > 3000.

5 This holds for the most examined networks except for networks with a
high link density, such as the Dutch soccer and food web networks. Most
complex networks are considered to be sparse.
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larger proportion E½Lmspt %=L of the substrates observed via
G[mspt implies a lower sampling bias. Fig. 6 and Table 1
show that a network tends to have a small sampling bias
if its link density p is low and the average hopcount E½HN%
is large, especially for small m=N. Indeed, when A ¼ m

N !
0, the shortest paths between the set M seldom overlap
and

E½Lmspt%
L

’
A2N2

2 E½HN%
NðN!1Þ

2 p
’ A2E½HN %

p
: ð6Þ

In fact, for anym, the proportion of observed links E½Lmspt %
L can

be upper bounded by (6). When m is larger, the shortest
paths between set M overlap more, and E½Lmspt %

L is far smaller
than its upper bound (6). Therefore, the sampling bias of
these networks may have a different order for large m=N.
No clear correlation between the sampling bias and other
metrics have been found.

In summary, in both the weighted Erdös–Rényi random
graph and unweighted real-world networks, to obtain an
increasingly accurate view of the network, a higher than
linear detection/measuring effort m=N is needed. When
m=N is small, the sampling bias depends purely on the
average hopcount E½HN% and the link density of p (or po)
of an unweighted network (or of the overlay G[spt upon a
weighted network). Indeed, a larger average hopcount
E½HN% and a small p or po imply a small sampling bias. For

small m=N, the sampling bias of the weighted Erdös–Rényi
random graph is positively correlated with N.

5. Conclusions

In this paper, we study a network sampling method
originated from the Internet, namely G[mspt the union of
m shortest path trees, or equivalently, the union of shortest
paths between each pair of a set M of m testboxes. The
analysis covers a wide class of networks, ranging from
real-world unweighted complex networks to weighted
Erdös–Rényi random graphs.

The interconnections of set M, i.e. the subgraph GM, are
correlated with the sampled network G[mspt as follows:
When the underlying network is a real-world unweighted
network GðN; LÞ;GM is a subgraph of the sampled overlay
G[mspt . Surprisingly, when the underlying network is an
Erdös–Rényi random graph equipped with i.i.d. regular link
weights, the set M in the sampled overlay graph G[mspt fol-
lows the same degree distribution as the overlay G[sptðmÞ
upon GM. The degree distribution of DM of the set M in
the sampled overlay graph G[mspt is independent of the size
N of the network.

To obtain an increasingly accurate view of a given net-
work, a higher detection/measuring effort (the sizem of set
M) is needed, in fact, higher than proportional.

Table 1
Topology features of real-world networks.

N L C E½HN % hmax E½D% p

Power grid 4941 6594 0.11 18.99 46 2.67 0.00054
Gnutella Crawl2 568 1906 0.04 6.10 21 2.43 0.0016
Web of Science Citations (koh) 3704 12673 0.30 3.67 12 6.84 0.0018
Science coauthorship network 379 914 0.80 6.03 17 4.82 0.0128
Air transportation 2179 31326 0.59 3.02 8 28.75 0.0132
Word adjacencies 112 425 0.19 2.51 5 7.59 0.068
Dutch soccer 685 10310 0.75 4.45 11 30.10 0.044
Food web (Florida) 128 2075 0.33 1.76 3 32.42 0.26
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Fig. 6. The average proportion of links E½Lmspt %=L discovered via G[mspt as a function of the relative size m=N of set M.
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When m=N is small, as in RIPE NCC and the PlanetLab
measurement where the number m of testboxes (hun-
dreds) is much smaller the number of routers in the Inter-
net (hundreds of thousands), the sampling bias tends to be
small if the average hopcount E½HN% is large and the link
density p, or link density po of the overlay network G[spt ,
is small. Hence, a large number of testboxes randomly
placed far from each other is preferable for good network
topology measurements. Furthermore, the sampled over-
lay network consists of a large number,m, of shortest paths
that either start or end at each testbox. Links connected to
the testboxes are more likely to be sampled than the other
links. Hence, placing testboxes at hubs (nodes with a high
degree in the underlying network) may contribute to a
small sampling bias. In the sampled overlay G[mspt , the set
of m testboxes tend to possess a higher average degree
than the other (intermediate) nodes, if the underlying net-
work is dense,6 as observed in Fig. 3.
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Appendix A. Proof of extreme cases of Conjecture 3

To simplify the proof, instead of DM, we use DNðmÞ to
denote the degree of set M in the overlay G[mspt , where N
is the number of nodes in the underlying graph and m is
the number of testboxes.

A.1. Proof of the Corollary for k ¼ 1

Firstly, we prove the conjecture for Pr½DNðmÞ ¼ 1%. Van
der Hofstad et al. [34] have shown that pnðiÞ ¼ n!i

ni is the
probability that the paths from the root to i uniformly cho-
sen nodes that may include the root in a URT of size n share a
common link. If one of the i nodes equals the root, there is
no link in common because there is no path from the root
to itself. Denote by ANo root the event that the paths from the
root to m uniformly chosen nodes that do not include the
root in a URT of size n share a common link and by ARoot

the event that the paths from the root to m uniformly cho-
sen nodes that may include the root in a URT of size nshare a
common link. The probability that the root is one of the m
nodes is Pr½Root% ¼ m

n . Then

Pr½ANo root% ¼ Pr½ARootjNo root% ¼ Pr½ARoot \ fNo rootg%
Pr½No root%

:

If one of the m nodes is the root, there is no link in com-
mon. That event is not included in ARoot, which means that

Pr½ARoot \ fNo rootg% ¼ Pr½ARoot% ¼ pnðmÞ

and that

Pr½ANo root% ¼
pnðmÞ
1! m

n
¼

n!m
n-m

1! m
n
¼

1
m

¼ p+
nðmÞ:

Finally, we arrive at p+
nðmÞ, the probability that the paths

from the root to m uniformly chosen nodes that do not in-
clude the root in a URT of size n share a common link. If
these paths share a link, then the number of links con-
nected to the root and traversed by these paths must be
one. Therefore, the probability Pr½D ¼ 1% of the set M in a
underlying graph with N nodes is

Pr½DNðmÞ ¼ 1% ¼ p+
Nðm! 1Þ ¼ 1

m! 1

In the URT with m nodes, according to (1) the probability
Pr½DG[spt ¼ 1% ¼ 1

m!1 , which explain the match of the first
node in Fig. 4.

A.2. Proof of the Corollary for k ¼ m! 1

The extreme case Pr½DNðmÞ ¼ m! 1%is proved by using
the URTs separation theorem [21, Theorem 16.2.1] and
considering Fig. 18.3 in [21]. A URT of size N can be sepa-
rated in a URT T1 of size k and a URT T2 of size N ! k that
incorporates the root (see Fig. 18.3 in [21, Theorem
16.2.1]). The maximum degree of the root is achieved in
two cases: (a) there is precisely 1 node of M in T1 and
m! 2 in T2 or (b) there is none in T1 and all m! 1 are in
T2. If there is more than 1 node of M in T1, the degree of
the root DNðmÞ is smaller than m! 1, because we need to
have m! 1 separate clusters attached to the root that each
contain precisely one node of M. Thus,

Pr½DNðmÞ¼m!1%

¼
XN!1

k¼1

Pr½DN!kðm!1Þ¼m!2%

k
1

! "
N!k!1
m!2

! "

N!1
m!1

! " Pr½T1 ¼ k%

þ
XN!1

k¼1

Pr½DN!kðmÞ¼m!1%

k
0

! "
N!k!1
m!1

! "

N!1
m!1

! " Pr½T1 ¼ k%

because the number of ways to distributem! 1 nodes over
N ! 1 places that are different from the root such that there
is 1 of the m in T1 and the other m! 2 in T2 is
k
1

! "
N ! k! 1
m! 2

! "
and there are N ! 1

m! 1

! "
ways to distrib-

ute m! 1 nodes over N ! 1 places. Further, the URTs sepa-
ration theorem implies that Pr½T1 ¼ k% ¼ 1

N!1. This gives the
recursion,

Pr½DNðmÞ ¼ m! 1% ¼ 1

ðN ! 1Þ
N ! 1
m! 1

! "

/
XN!1

k¼1

kPr½DN!kðm! 1Þ ¼ m! 2%
N ! k! 1
m! 2

! "%

6 When the underlying network is sparse, the uniformly distributed
testboxes tend to possess a small degree in the underlying network, which
limits the number of links incident to the testboxes to be sampled. On the
other hand, those few high degree nodes in the underlying network are
likely to appear in the sampled overlay as the intermediate nodes. Hence, in
the sampled overlay network, the average degree of the intermediate nodes
may be higher than that of the testboxes.
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þ Pr½DN!kðmÞ ¼ m! 1%
N ! k! 1
m! 1

! "&

¼ 1

ðN ! 1Þ
N ! 1
m! 1

! "

/
XN!1

q¼m!1

(
ðN ! qÞPr½Dqðm! 1Þ ¼ m! 2%

q! 1
m! 2

! "

þ Pr½DqðmÞ ¼ m! 1%
q! 1
m! 1

! "&
;

where, in the last line, we have incorporated that
Pr½Dqðm! 1Þ ¼ m! 2% ¼ 0 if q < m! 1. From (1), the initial
condition is Pr½DmðmÞ ¼ m! 1% ¼ 1

ðm!1Þ!.
Further,

ðN ! 1Þ
N ! 1
m! 1

! "
Pr½DNðmÞ ¼ m! 1%

¼ ðN ! 1Þ
XN!1

q¼m!1

Pr½Dqðm! 1Þ ¼ m! 2%
q! 1
m! 2

! "

þ
XN!1

q¼m!1

Pr½DqðmÞ ¼ m! 1%
q! 1
m! 1

! "%

! q! 1ÞPr½Dqðm! 1Þ ¼ m! 2%
q! 1
m! 2

! "! &
:

After substitution of N ! N þ 1 in the above and subtract-
ing the above yields, for the left-hand side,

L ¼ N
N

m! 1

! "
Pr½DNþ1ðmÞ ¼ m! 1%

! ðN ! 1Þ
N ! 1
m! 1

! "
Pr½DNðmÞ ¼ m! 1%

and the right-hand side

R ¼ Q þ
N ! 1
m! 1

! "
Pr½DNðmÞ ¼ m! 1%

! ðN ! 1Þ
N ! 1
m! 2

! "
Pr½DNðm! 1Þ ¼ m! 2%

with

Q ¼ N
XN

q¼m!1

Pr½Dqðm! 1Þ ¼ m! 2%
q! 1
m! 2

! "

! ðN ! 1Þ
XN!1

q¼m!1

Pr½Dqðm! 1Þ ¼ m! 2%
q! 1
m! 2

! "

¼ N
XN

q¼m!1

Pr½Dqðm! 1Þ ¼ m! 2%
q! 1
m! 2

! ""

!
XN!1

q¼m!1

Pr½Dqðm! 1Þ ¼ m! 2%
q! 1
m! 2

! "#

þ
XN!1

q¼m!1

Pr½Dqðm! 1Þ ¼ m! 2%
q! 1
m! 2

! "

¼ NPr½DNðm! 1Þ ¼ m! 2%
N ! 1
m! 2

! "

þ
XN!1

q¼m!1

Pr½Dqðm! 1Þ ¼ m! 2%
q! 1
m! 2

! "

Simplified,

L&R ¼ N
N

m! 1

! "
Pr½DNþ1ðmÞ ¼ m! 1%

! N
N ! 1
m! 1

! "
Pr½DNðmÞ ¼ m! 1%

¼
N ! 1
m! 2

! "
Pr½DNðm! 1Þ ¼ m! 2% þ

XN!1

q¼m!1

Pr½Dqðm! 1Þ

¼ m! 2%
q! 1
m! 2

! "

Repeating the same procedure to remove the last remain-
ing sum gives, for the left-hand side,

L ¼ ðN þ 1Þ
N þ 1
m! 1

! "
Pr½DNþ2ðmÞ ¼ m! 1%

! ðN þ 1Þ
N

m! 1

! "
Pr½DNþ1ðmÞ ¼ m! 1%

! N
N

m! 1

! "
Pr½DNþ1ðmÞ ¼ m! 1%

þ N
N ! 1
m! 1

! "
Pr½DNðmÞ ¼ m! 1%

¼ ðN þ 1Þ
N þ 1
m! 1

! "
Pr½DNþ2ðmÞ ¼ m! 1%

! ð2N þ 1Þ
N

m! 1

! "
Pr½DNþ1ðmÞ ¼ m! 1%

þ N
N ! 1
m! 1

! "
Pr½DNðmÞ ¼ m! 1%:

The right-hand side becomes,

R ¼
N

m! 2

! "
Pr½DNþ1ðm! 1Þ ¼ m! 2%

!
N ! 1
m! 2

! "
Pr½DNðm! 1Þ ¼ m! 2%

þ
XN

q¼m!1

Pr½Dqðm! 1Þ ¼ m! 2%
q! 1
m! 2

! "

!
XN!1

q¼m!1

Pr½Dqðm! 1Þ ¼ m! 2%
q! 1
m! 2

! "

¼
N

m! 2

! "
Pr½DNþ1ðm! 1Þ ¼ m! 2%

!
N ! 1
m! 2

! "
Pr½DNðm! 1Þ ¼ m! 2%

þ
N ! 1
m! 2

! "
Pr½DNðm! 1Þ ¼ m! 2%

¼
N

m! 2

! "
Pr½DNþ1ðm! 1Þ ¼ m! 2%:

Combining both sides gives,

N
m! 2

! "
Pr½DNþ1ðm! 1Þ ¼ m! 2%

¼ ðN þ 1Þ
N þ 1
m! 1

! "
Pr½DNþ2ðmÞ ¼ m! 1%

! ð2N þ 1Þ
N

m! 1

! "
Pr½DNþ1ðmÞ ¼ m! 1%

þ N
N ! 1
m! 1

! "
Pr½DNðmÞ ¼ m! 1%:
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By defining

r½N;m% ¼
N ! 1
m! 1

! "
Pr½DNðmÞ ¼ m! 1%

we arrive at the recursion,

r½N þ 1;m! 1% ¼ ðN þ 1Þr½N þ 2;m%
! ð2N þ 1Þr½N þ 1;m% þ Nr½N;m% ð7Þ

with initial condition

r½m;m% ¼ 1
ðm! 1Þ!

:
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mspt in G[mspt on top of G0:2ð800Þ and m ¼ 10;20; . . . ;60.
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What we claim is that Pr½DNðmÞ ¼ m! 1% ¼ Pr½DmðmÞ ¼
m! 1% for all N, which means that

r½N;m% ¼
N ! 1
m! 1

! "
Pr½DmðmÞ ¼ m! 1% ¼

N ! 1
m! 1

! "
r½m;m%

¼
N ! 1
m! 1

! "
r½m;m%:

Introduced in (7) gives
N

m! 2

! "
r½m! 1;m! 1%

¼ ðN þ 1Þ
N þ 1
m! 1

! "
r½m;m% ! ð2N þ 1Þ

N
m! 1

! "
r½m;m%

þ N
N ! 1
m! 1

! "
r½m;m%

or

N
m! 2

! "
ðm! 1Þ ¼ ðN þ 1Þ

N þ 1
m! 1

! "

! ð2N þ 1Þ
N

m! 1

! "
þ N

N ! 1
m! 1

! "

The relation is, indeed, an identity.

Appendix B. Number of links and nodes in G[mspt

See Figs. 7–9.
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