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Abstract—In this paper we take one of the cutting edge 

algorithms for computing the all-terminal reliability and the k-

terminal reliability of a network and use it to compute the 

reliability of a real life gas distribution network in the 

Netherlands. To do this we estimate network properties using 

industry knowledge and combine several different techniques 

to make the problem computable. This is the first time known 

to us that these techniques have been applied to a large, in this 

case over 20000 nodes, real life network. Besides this, we show 

the versatility of this pathwidth-based dynamic programming 

algorithm by suggesting some powerful but simple 

modifications and argue that this network is representative for 

other distribution networks. 
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I.  INTRODUCTION  

There is a growing need to increase the resilience of 
critical infrastructures such as power and communication 
networks, because the impact of failures of these systems is 
becoming larger and because these systems are becoming 
more complex [1]. The introduction of hybrid systems and 
smart grids, grids that provide full visibility and control [2], 
results in added complexity. This is also true for gas 
distribution networks. Natural gas consumption forms about 
25 percent of the total energy consumption in Europe [3]. As 
a consequence, disruptions in gas distribution networks can 
have major impacts. Furthermore, there is a shift from 
natural gas to renewable gas, which will increase the number 
of distribution points in the network [4]. This, in 
combination with increased interaction with electricity and 
heat grids, will cause greater uncertainty in the gas 
distribution networks. 

Because of these developments there is a growing need to 
quantify the resilience of the network by means of resilience 

metrics. One of such metrics is the reliability, which is 
defined in the IEEE 90 standard [5] as “the ability of a 
system or component to perform its required functions under 
stated conditions for a specific period of time”. Because a 
simulation of the system is often infeasible or takes very 
long, faster methods to estimate the reliability are needed. 

In the literature there are two state-of-the-art approaches 
for quantifying reliability of a network (or graph). One uses 
binary decision diagrams [6] [7] and the other uses the 
pathwidth of a graph [8]-[10]. These two approaches are 
based on the same structural aspects of a graph and although 
they differ in their practical implementation the underlying 
principles are related. We have chosen to work with the 
pathwidth approach since it is simple to implement and very 
agile. 

Here, as is common in the literature [11], [12], we define 
the reliability of a network as the probability that the 
network, or part of it, is connected given the failure 
probabilities of its components. There are different forms of 
reliability, the most general being the k-terminal reliability. 
The k-terminal reliability is the probability that a specific 
subset of k nodes is connected. Two common cases of the k-
terminal reliability are the all-terminal reliability and the 
two-terminal reliability. In the case of the all-terminal 
reliability k equals the total amount of nodes in the network. 
In other words, the all-terminal reliability is the probability 
that the network is fully connected. For the two-terminal 
reliability k = 2. This means finding the probability that there 
is a path between two specified nodes in the network. All 
these problems are well known to be NP-hard [12], [13].  

In this paper we will compute both the all-terminal 
reliability and the k-terminal reliability of the gas distribution 
network in Texel, an island in the Netherlands, where we 
choose the subset of k nodes to be the union of the consumer 
nodes and the distribution node. So the k-terminal reliability 



is the probability that all consumers are connected to the 
distribution node. 

The method used for computing the k-terminal reliability 
is an extension of the method used to compute the all-
terminal reliability, of which the latter is easiest to explain. 
Therefore, in various sections we first discuss the approach 
for the all-terminal reliability and afterwards the extension 
needed for the k-terminal reliability. The reliability of an 
edge is defined as one minus the failure probability. We 
assume the network is undirected. It is also assumed that the 
nodes are completely reliable and the edges have 
independent failure probabilities. This assumption is 
defended in Section III. 

The next section will introduce graph notation, the notion 
of pathwidth and the peculiarities of the gas distribution 
network. In Section III we will explain how we estimated the 
reliabilities of the edges. In section IV we describe which 
reductions we apply to the network. In Section V the 
heuristic for finding a path decomposition with low 
pathwidth will be explained. Section VI gives the details for 
several variants of the dynamic programming routine that 
can be used to compute the reliability using the path 
decomposition. The last three sections deal with the results, 
the discussion and the conclusion respectively. 

II. PRELIMINARIES 

A. Graphs and Pathwidth 

We consider a network, or graph, G(V,E) where V is a set 
of nodes and E is a set of edges e = (v,w) with v,w ∈ V. 

Furthermore, we denote |V| = n and |E| = m. The 
neighborhood N(X) of a set X  ⊆ V defined as all the nodes 
not in X that have a neighbor in X. For each edge e ∈ E there 

is an edge reliability re. Let R(G) denote the reliability of 
graph G. The subset of k nodes selected for the k-terminal 
reliability is denoted as K and a node v ∈ K is called a 

terminal node. A non-terminal node is a node not in K. 
We define an instance of the graph G(V,E) as a situation 

in which every edge e ∈ E is either operational or failed. 
Since each edge has a probability of being operational, a 
probability can also be associated with each instance. 

Definition: (Path decomposition) A path decomposition 
of a graph G(V,E) is a path P where every vertex x ∈ P is 

associated with a set of nodes Bx ⊆ V (a bag) for which it 

holds that ∪x∈P Bx = V and with the following properties: 

 for any edge (u,v) ∈ E there exists a vertex x ∈ P 
such that {u,v} ⊆ Bx. 

 if v ∈ Bx and v ∈ By then v ∈ Bz for every vertex z on 
the path from vertex x to vertex y in P. 

The width of a path decomposition is the size of the 
largest bag minus one. The pathwidth of a graph is the 
minimum width over all path decomposition of the graph. 
Different but equivalent definitions also exist [14]. 

When writing a dynamic program for a path 
decomposition it is very convenient if the path 
decomposition has a certain structure. This is why we 
introduce the notion of a nice path decomposition. The 

definition given here is slightly different than the original 
definition [15]. 

Definition: (Nice path decomposition) A nice path 
decomposition is a path decomposition with a root where 
each of the bags is of one of the following types: 

 End bag: a vertex x of P with degree one and with 
Bx = ∅. 

 Introduce node bag: an internal vertex x of P with 
one child vertex y for which Bx = By ∪ {v} for some 
node v ∉ By. The bag is said to introduce vertex v. 

 Introduce edge bag: an internal vertex x of P 
labeled with an edge (u,v) ∈ E with one child vertex 
y for which u,v ∈ Bx = By. The bag is said to 
introduce edge (u,v). 

 Forget bag: an internal vertex x of P with one child 
vertex y for which Bx = By/{v} for some vertex v ∈ 
By. The bag is said to forget vertex v. 

We additionally require that every edge is introduced 
exactly once. 

In [16] it is shown that, given a path decomposition, a 
nice path decomposition of the same pathwidth pw can be 
found in O(n pw

O(1)
) time. We choose one of the end bags to 

be the root. 

B. Texel Gas Distribution Network 

Texel is an island in the north of the Netherlands. It has a 
surface of about 170 km

2 
and approximately 13000 

inhabitants. The data about its gas distribution network was 
supplied by Alliander, a Dutch energy distributor. There is 
one central distribution point for the island where gas arrives 
from the mainland. The network can be divided into three 
separate parts: the part that can handle pressures of up to 8 
bar, the part that can handle pressures of up to 3 bar and the 
part that can handle pressures of up to 0.1 bar, i.e. 100 mbar. 
The 8 and 3 bar parts combined form a connected 
subnetwork consisting of 1845 nodes and 1851 edges. The 
complete network consists of 20567 nodes and 20749 edges, 
this represents over 400 km of pipe. The maximum degree of 
the network is 3. These numbers indicate that the network is 
quite sparse. This is the case because the edges in the graphs 
are very closely related to the physical pipes in the actual 
network, i.e. the mapping of pipes to edges is almost 
bijective.  

In the network we consider three different types of nodes: 
consumer nodes, connection nodes and distribution nodes. A 
consumer node is where the gas company delivers gas to a 
consumer, i.e. someone who pays for it. This does not mean 
that it is a single household, it can also be a factory or a 
camping for example. There are 7240 consumer nodes on the 
island and one distribution node, implying that there are 
13326 connection nodes. The consumer nodes are almost 
always, namely in 7236 out of 7240 cases, at the end of a 
pendant in the network. 

The network is a good instance for a case study since the 
complete gas network is segmented similarly throughout the 
Netherlands: a transportation grid that operates at high 
pressures and at specific points feeds the gas into distribution 
grids [4], such as the network under consideration in this 
paper. 



III. ESTIMATING RELIABILITIES 

In order to assess the reliability of the network we need 
to have information about the edge reliabilities. In this paper 
some elementary calculations are made to produce a formula 
that assigns a reliability to each edge depending on the 
material of the edge and its length. Although industry experts 
indicate that these two variables are most indicative for edge 
reliability, more research should be done to make more 
accurate predictions. 

We assume that nodes are completely reliable and the 
edges have independent failure probabilities. The assumption 
that edges may fail and nodes are reliable is realistic for this 
network since most component failures occur because of 
corrosion or digging accidents and therefore almost always 
affect pipes [17], rather than connecting points. The edge 
failure rates can be viewed as independent, because neither 
of the main causes is of a dependent nature. 

The average disruption duration is known to be 1.81 
hours [17]. Alliander provided data from which it is possible 
to deduce the probability that a pipe, or edge, of average 
length is disrupted during a year for different materials. This 
combined with the average disruption duration gives the 
fraction of time an edge of average length is failed. If this 
fraction is known then the fraction of time an edge is 
operational, i.e. the reliability, is also known. From this the 
reliability of an edge of one meter, runit,M, can be determined 
for each material M. For an edge with a length of x meter and  
material M the reliability is (runit,M )

x
. 

IV. REDUCTIONS 

The reductions introduced in this section reduce the size 
of the network while keeping all relevant information for 
computing the reliability. All reductions mentioned here can 
be found in [18] and [19]. By Ω we denote a global 
multiplicative factor such that  

 R(G) = Ω · R(G’)                            (1) 

where G’
  
is the network after the reductions. 

A. All-Terminal Reductions 

To reduce the network in the all-terminal reliability 
method, we start with simple reductions: There are three 
types of simple reductions: pendant, series and parallel 
reductions. Each reduction modifies the network structure 
and reliabilities and some also adjust Ω. Pendant reductions 
remove all pendants, i.e. nodes with degree 1, from the 
network. Series reductions remove all nodes with degree 2 
from the network and introduce an edge between the two 
neighbors of the degree 2 node. Parallel reductions merge 
two parallel edges. By applying these reductions on a 
network until no more reductions are possible, all series-
parallel networks will collapse, i.e. reduce to a single edge 
[18]. The reliability of this edge times Ω, the global 
multiplicative factor, gives the all-terminal reliability of the 
original network. This means that the all-terminal reliability 
of all series-parallel networks can be computed in linear time 
in the size of the input. Since the part of the network that can 

handle 8 and 3 bar is series-parallel, it collapses and the 
reliability of that part can be given in linear time. 

When the network has not collapsed, another reduction, a 
bridge split, can be performed. A bridge is an edge that 
disconnects the graph if it is removed. In order for the graph 
to remain connected it is therefore always necessary that this 
edge is functional. If there is a graph G with a bridge i and 
two components G’ 

 
and G’’ that are the result of removing 

the bridge, then  

 R(G)=ri · R(G’) · R(G’’)                        (2) 

To find the reliability of the graph, remove the bridge, set 
Ωnew = Ωold · ri, and recurse on the two resulting networks. 

The mentioned reductions remove all nodes with degree 
1 and 2 and do not increase the degree of nodes. Therefore, 
since we started with a graph with maximum degree 3, the 
resulting graph is now cubic, or 3-regular. 

B. K-Terminal Reductions 

The simple reductions of the all-terminal reliability 
method, with some minor adjustments, can still be used in 
the k-terminal reliability method. The main restriction is that 
a series reduction of a degree 2 terminal node is only 
possible without loss of essential information if the two 
neighbors of the terminal node are also terminal nodes. 
However, despite this restriction, using polygon-chain 
reductions it is still possible to collapse all series-parallel 
networks [18]. 

The bridge split can also be used for the k-terminal 
reliability method. However, some details of the method 
have to be changed. If one part of the network, after splitting, 
does not contain a terminal node then this part can be 
discarded. If both parts contain terminals then the endpoints 
of the removed bridge need to be set as terminals in the two 
resulting parts of the network, because after the split these 
points still have to be in the solution to ensure adding the 
bridge results in a connected solution. 

V. DECOMPOSITION 

Unfortunately the reductions do not always fully collapse 
a network, and the remaining network may still be too large 
for computation of the reliability in reasonable time. 
Therefore we use an algorithm that makes use of path 
decomposition. Different versions of the algorithm are 
proposed in the literature [8]-[10]. How well the 
decomposition works depends on the pathwidth of the graph.  

A. Finding a Decomposition 

To find a good path decomposition, i.e. one with a small 
pathwidth, within reasonable time, we use a heuristic [10]:  

 First of all, remove all nodes with degree 2. After 
finding a decomposition, these can be easily inserted 
in the decomposition without increasing the width.  

 Then, start with a node v and choose a node w ∈ 
N({v}) that minimizes |N(V \{v,w})|, i.e. the amount 
of nodes in the selected part of the graph that have a 
neighbor in the unselected part of the graph. Now 



add a node u ∈ N({v,w}) that minimizes |N(V \ 
{v,w,u})|. Continue until all nodes are included.  

 Repeat this with every node as start node.  
The path decomposition can be deduced from the order 

of addition of the nodes. Select the run of the heuristic that 
has the corresponding path decomposition with the smallest 
pathwidth. 

To form a nice path decomposition start with an end bag. 
Then take the order of nodes in the optimal run of the 
heuristic. This is the order of the introduce node bags. Now 
enter an introduce edge bag for every edge at the points in 
the decomposition where both nodes of the edge have been 
introduced. Then add forget bags as soon as all edges to a 
node have been introduced. Finish with an end bag. 

As an illustration a possible outcome of the heuristic and 
the corresponding nice path decomposition for the graph in 
Fig. 1 are given.  

 
Figure 1.  An example graph 

The graph has a pathwidth of 2. The outcome of the 
heuristic could be: (1,2,3,4). The decomposition series would 
then be 

(1,2,e(1,2),3,e(1,3),−1,e(2,3),4,e(2,4),−2,e(3,4),−2,−4) 

where v denotes the node activation of node v, −v denotes the 
node deactivation of node v and e(v,w) is the edge activation of 
edge e = (v,w). The resulting nice path decomposition is: 

({∅},{1},{1,2},{1,2}12,{1,2,3},{1,2,3}13,{2,3} 

{2,3}23,{2,3,4},{2,3,4}24,{3,4},{3,4}34,{4},{∅}) 

where {u,v,w}uv denotes an introduce edge bag that 
introduces edge (u,v) ∈ E. 

VI. DYNAMIC PROGRAM 

The idea behind the dynamic program is that the graph is 
split into two parts: A processed subgraph H = (V’ ,E’) and a 
non-processed subgraph L = (V’’,E’’), where L is the 
complement of H, i.e.  

 V’
 ∪ V’’

 
= V, E’

 ∪ E’’
 
= E and E’

 
∩ E’’

 
= ∅       (3) 

The boundary set is defined as F = V’
 
∩V’’. In the 

algorithm all information about H needed to compute the all-
terminal reliability is stored in the state of the algorithm. This 
state is closely related to the boundary set. At the start of the 
algorithm H is empty and L is the entire graph. At the end of 
the algorithm the situation is reversed and the whole graph is 
processed. To achieve this, the algorithm enlarges H and 
reduces L, it does so by modifying F. The algorithm does 
this by following the path decomposition. The bags 
associated with vertices in the path decomposition assume 
the role of F. 

In order to describe how the algorithm processes the 
graph by means of the path decomposition, we must first 
introduce some notation. We denote the state by a set of pairs 
(π,Pπ), where π is a partition of F and Pπ is the probability 
corresponding to this partition. An element of a partition is 
also called a block. The partition π = vw\u is to be read as 
having v and w in the same block of π and u being in a 
separate block. Furthermore, M(π,v) denotes the set of all 
partitions that can be obtained from the partition π by 
inserting v in one of the blocks of the partition π. Given an 
edge e = (v,w), π ∨ e denotes the partition that results when 
the blocks of π containing v and w are merged. A partition π 
represents all instances where nodes in the same connected 
component are also in the same block in π. 

Now we will explain why partitions on F and associated 
probabilities are the only details that need to be stored in the 
state. If F is a single node, the relevant information about H 
is the probability that it is connected. This is the sum of the 
probabilities of all instances in which H is a single connected 
component, i.e. the all-terminal reliability of H. The all-
terminal reliability equals R(H)·R(L) in this case. This can be 
generalized for |F| > 1: in this case an instance of H does not 
have to be a single connected component, but the different 
connected components of the instance could become a single 
connected component by means of edges in L. However, if a 
connected component of H does not have a node in F, it can 
never form a connected solution. This means that all 
instances of H with connected components without a node in 
F can be discarded, because they can never result in an 
instance that is fully connected. 

If we know how the different connected components of 
the instances of H are connected to F and an associated 
probability for all these instances, i.e. if we know (π,Pπ), we 
can compute the probability that the whole graph will be 
connected. The crucial point here is that we do not need any 
information about the actual instances of H, only about their 
structures with regard to F. The number of ways the nodes in 
F can be connected to connected components is upper 
bounded by the number of partitions possible on F. 

At each step in the algorithm the state is modified. How 
this is done depends on the type of bag. This is why we will 
now specify for each bag (except for the empty end bag) how 
it modifies the state. Afterwards some examples will be 
given to illustrate the operations. 

 Introduce node bag: Extend all partitions in the state 
by a singleton consisting of the introduced node v 
and do not change the probability: 

{(π, Pπ)} →{(π|v, Pπ)} 

 Introduce edge bag: The introduced edge vw can 
either be operational or not operational: 

{(π,Pπ)} → {(π, (1−re)·Pπ), (π ∨ e, re ·Pπ +Pπ ∨ e)} 

 Forget bag: When a node v is deactivated, the 
algorithm first determines if this is the last node in F, 
if so the network is fully processed, the algorithm 
terminates and the probability saved in the state is 
the probability that the whole graph is a single 



connected component, i.e. the all-terminal reliability. 
If this is not the case, all partitions where v is a 
singleton are removed, because the connected 
component that v was in could never reach the other 
connected components since it is no longer 
connected to the bag. The other partitions are 
adjusted as follows: 


An example of an introduce node bag introducing v, if 

the state consisted of nodes w and u: 

 

An example of an introduce edge bag introducing vw, 
with a state consisting of nodes v and w: 

 

An example of a forget bag forgetting v, with a state 
consisting of nodes v, w and u (for simplicity only a part of 
the state is given): 

 

The total amount of steps in the algorithm is 2 · n + m 
and therefore linear in the input. The time needed for each 
step is the pivotal aspect in the total running time. This time 
depends on the size of the state and therefore on the amount 
of partitions possible on F. This is exponentially dependent 
on the size of F. The running time of the algorithm is 
therefore exponential in the maximum size of F. The 
maximum size of F −1 is the width of the path 
decomposition. This means the running time of the algorithm 
is exponential in the width of the found path decomposition. 
Therefore, a path decomposition with a small width is 
essential to a fast algorithm. 

The running time of the algorithm is linear in the input 
and exponential in the pathwidth, i.e. it runs in O(p(n) · 
f(pw)) where p(n) is a polynomial function of the input and 
f(pw) is an exponential function of the pathwidth [8]. When 
the pathwidth is fixed, the algorithm runs in polynomial 
time, which means the algorithm is fixed parameter tractable 
(FPT) [20]. 

A. Adjustments for K-Terminal Reliability 

The all-terminal reliability algorithm can be modified to 
compute the k-terminal reliability. The main issue is that the 
state of the all-terminal reliability algorithm does not contain 
enough information. The information that needs to be added 
to the state is which blocks of the partitions correspond to a 
connected component with terminals in it. This can be done 
by maintaining a label for each block of each partition, 0 if 
there is no terminal in the corresponding connected 
component and 1 if there is. This information is needed 

because non terminal nodes do not have to be connected to 
other nodes. Instances with connected components without 
terminals need to be kept in the state since terminals in L 
could be connected through this connected component. 
However, if a node is deactivated, the partitions with that 
node as a singleton do not have to be removed from the state 
if the corresponding connected components do not contain 
terminal nodes. In this case it does not matter if these 
connected components can never be connected to the other 
connected components since they do not have to be. The 
instances corresponding to these partitions are still valid. 

Consider a state with two nodes v and w in the boundary 
set. Two partitions are possible on the nodes of this boundary 
set, vw and v\w. However, adding labels brings the amount of 

possibilities to six, i.e. (vw,1), (vw,0), (v\w,1\1), (v\w,1\0), 
(v\w,0\1) and (v\w,0\0). As is visible from this small 
example, there is a risk of the state becoming much larger. 
However, there are some restrictions on this. For example, a 

subset of a partition that contains a node that is a terminal 
itself can never have the label 0. In the previous example, if 
w was a terminal (vw,0),(v\w,1\0) and (v\w,0\0) would not be 

possible partitions. 
Another thing to take into consideration is that, if all 

terminals are in H, partitions with a singleton block with 
label 1 and with label 0 on all other blocks are valid 

instances for the k-terminal reliability problem. This is true 
because such partitions correspond to situations where all 
terminal nodes are in the same connected component. 
Therefore, if the node in this singleton is deactivated, the 

probability belonging to the partition, before discarding the 
partition, should be saved and added to the final reliability. 
This final reliability is, after all, the sum of the probabilities 

corresponding to all valid instances, i.e. instances where all 
terminals are in a single connected component.  

VII. RESULTS 

A. All-Terminal Results 

As mentioned in Section IV, the simple reductions 

collapse the 8 and 3 bar subnetwork. Unfortunately this does 
not happen for the full network. However, due to the tree-
like structure of the graph, the reductions are substantial. 
After the network is split, the different sub-problems are 

even smaller. The resulting sizes after reductions and 
splitting can be found in Table I. Subnet 1 to 5 are the 
networks created after splitting the network. The next step is 

to find path decompositions. In total, for all subproblems, 
this can be done in 11 seconds. Running the heuristic with 
several random seeds often results in a path decomposition 
with a smaller width, meaning a faster run of the 

decomposition algorithm. This trade-off needs to be 
considered. We used 10 runs to find a good seed for the 
largest subnet. The smallest width found was 10. If a good 

path decomposition is found it can be used in consecutive 
runs of the algorithm if the topology remains identical. 
Finding a good pathwidth for the smaller subnets was not 
necessary since the first run gave a really small pathwidth. 

 



TABLE I.  THE NETWORK SIZE AFTER DIFFERENT REDUCTIONS 

Problem Reductions Nodes Edges Terminals 
Non-

terminals 

Full Net. - 20567 20749 7241 13326 

All-Term. Simple 262 393 262 0 

 Subnet 1 34 51 34 0 

 Subnet 2 12 18 12 0 

 Subnet 3 186 279 186 0 

 Subnet 4 4 6 4 0 

 Subnet 5 12 18 12 0 

K-Term. Simple 1111 1281 771 340 

 Polygon 841 972 579 262 

 Subnet 1 117 134 83 34 

 Subnet 2 45 51 33 12 

 Subnet 3 584 677 398 186 

 Subnet 4 16 18 12 4 

 Subnet 5 41 47 29 12 

 

The time each step of the algorithm takes can be found in 
Table II. The times in brackets show the times needed if a 
run also has to find a good seed for the pathwidth heuristic. 
All results were obtained using an Intel(R) Core(TM) i5-

4310M CPU @ 2.70GHz processor laptop with 8G of RAM. 
The all-terminal reliability found was 0.9919. This means 
that about 70 hours per year at least one node does not 

receive gas. It is difficult to assess how reasonable this is 
because exact statistics on this are not readily available. 
From industry experts it is known that a household in the 
Netherlands is disconnected from the network for about 1 

minute per year on average. If we assume that the average 
amount of households that is affected by a disruption is five, 
a construction incident in a street for example, then the found 
reliability translates to households being disconnected for 3 

minutes per year on average. Although this is a remarkable 
similarity, more accurate industry data would be preferable 
before drawing conclusions. 

TABLE II.  COMPUTATION TIMES FOR THE DIFFERENT STEPS 

 All-Terminal K-Terminal 

Reductions  12 129 

Pathwidth Heuristic 11 (x10) 11 (x10) 

Decomposition 13 390 

Total Method 36 (135) 531 (630) 

 
Overall, the method works well, because the graph has a 

very low pathwidth compared to the graph size. This is 
mainly the case because the structure of the graph ensures 
that, after reductions, the graph is quite sparse. The low 
computation times allow for additional analysis of the 
network: We can vary the edge reliabilities and see how they 
relate to the overall reliability of the network, see Fig. 2. 

 
Figure 2.  The all-terminal reliability of the texel gas distribution network 

for different uniform edge reliabilities 

B. K-Terminal Results 

The consumer nodes and the distribution node are the k 
nodes that are selected when computing the k-terminal 
reliability of the gas distribution network. This means that 
the k-terminal reliability is the probability that every 
consumer is connected to the distribution point. Both the all-
terminal reliability and the k-terminal reliability are very 
dependent on the probabilities of bridges in the graph, most 
of which are in chains with a pendant as one end node. Every 
one of these must function, otherwise the network is 
disconnected. 

Every pendant in the gas distribution network is a 
terminal, otherwise the edge towards it would be pointless. 
Because of this, both reliabilities being very dependent on 
the same edges, it is not expected that the all-terminal 
reliability and the k-terminal reliability are very different. 
This turns out to be a correct expectation, the value found for 
the k-terminal reliability is 0.9922. This is only 0.0003 more 
than the all-terminal reliability. 

Although less reductions are possible for the k-terminal 
reliability and the network is therefore bigger, the 
consequences of this are not as large as expected. First of all, 
because of the similarities of overall structure (still present 
after reductions), the pathwidth is not much larger than it 
was for the all-terminal reliability. Secondly, the dispersion 
of terminal nodes throughout the network limits the amount 
of labelings per partition that are possible and thus prevents 
an explosion of the state. 

The time needed for each step of the method and the total 
time needed to compute the k-terminal reliability are shown 
in Table II. Although for each step the times are higher, the 
difference is not very large because of the favorable 
properties the network and the locations of the terminals 
have.  

VIII. DISCUSSION 

A. Improvements 

The whole method was implemented using MATLAB. A 
C or C++ implementation would most likely be faster. 
However, the method implemented here is already much 
faster than other techniques currently in use [21]. 



Furthermore, in various papers close attention is spent on 
quickly finding a number for each partition and finding 
specific partitions by means of that numbering [6], [8]. Our 
implementation, on the other hand, walks through the whole 
state in each step of the algorithm. This could probably be 
done faster. 

The main restriction on the method presented here is 
memory. For certain networks the state becomes too large to 
perform some essential operations on it. A time-memory 
trade-off could be useful here. A hypothesis is that this could 
be achieved by using a tree decomposition instead of a path 
decomposition. The tree decomposition would have 
treewidth ≤ pathwidth. This means a state which uses less 
memory. However, merging the different boundary sets 
would probably be a time-expensive operation. We do not 
know of any paper in the literature that attempts this and are 
not sure about the feasibility, but we believe it is worth 
looking into. The most straightforward extension of the 
method is to compute bounds instead of an exact value. If the 
edge reliabilities are very high, which is almost always the 
case for real world networks, then partitions with many 
subsets become very unlikely. Eliminating these from the 
state would greatly reduce the size of the state whilst still 
giving a tight bound. 

One of the major changes occurring in gas distribution 
networks is that more distribution points are added to the 
network [4]. When a network has one distribution point, the 
all-terminal reliability basically asks: ‘what is the probability 
that every node is connected to a distribution point?’. 
However, when there are several distribution points, this is 
no longer the question being answered by the all-terminal 
reliability. If you would answer this question when there are 
several distribution points there could be several connected 
components in a valid instance, as long as each connected 
component contains a distribution point. A modification of 
the k-terminal reliability algorithm can be used to compute 
the probability that every node is connected to a distribution 
point. The label 1 on a subset of a partition now means that 
there is a distribution point in the corresponding connected 
component and the label 0 means there is not. Instead of 
keeping partitions where a singleton node with label 0 is 
deactivated, partitions where a singleton node with label 1 is 
deactivated should be kept. In these instances the respective 
connected component can never be connected to the other 
connected components. However, since there already is a 
distribution point in this connected component, it is not 
necessary that it is connected to the other connected 
components and these instances are still valid. It would even 
be possible to use a double labelling to find the probability 
that all k-terminals are connected to a distribution point, but 
of course the state could become very large very quickly. 

B. Extensions 

The most straightforward extension of the method is to 
compute bounds instead of an exact value. If the edge 
reliabilities are very high, which is almost always the case 
for real world networks, then partitions with many subsets 
become very unlikely. Eliminating these from the state 

would greatly reduce the size of the state whilst still giving a 
tight bound. 

Throughout the whole paper we assumed an undirected 
network, while the physical gas distribution network is 
partially directed: in the transition nodes from high pressure 
to lower pressure (8 bar to 3 bar, or 3 bar to 100 mbar) the 
gas can only flow one way. These restrictions will result in a 
lower reliability than when assuming an undirected network. 
However, since the number of transition nodes is small, we 
assume the impact of these restrictions is minor. An 
extension to the method will be required in order to take 
partial directedness into account. 

One of the major changes occurring in gas distribution 
networks is that more distribution points are added to the 
network [4]. When a network has one distribution point, the 
all-terminal reliability can be interpreted as the probability 
that every node is connected to a distribution point. 
However, when there are several distribution points, there 
could be several connected components in a valid instance, 
as long as each connected component contains a distribution 
point. A modification of the k-terminal reliability algorithm 
can be used to compute the probability that every node is 
connected to a distribution point. The label 1 on a subset of a 
partition now means that there is a distribution point in the 
corresponding connected component and the label 0 means 
there is not. Instead of keeping partitions where a singleton 
node with label 0 is deactivated, partitions where a singleton 
node with label 1 is deactivated should be kept. In these 
instances the respective connected component can never be 
connected to the other connected components. However, 
since there already is a distribution point in this connected 
component, it is not necessary that it is connected to the 
other connected components and these instances are still 
valid. It would even be possible to use a double labelling to 
find the probability that all k-terminals are connected to a 
distribution point, but of course the state could become very 
large very quickly.  

IX. CONCLUSION 

In this paper we have shown it is possible to use exact 
methods to find the all-terminal and k-terminal reliability of 
real life gas distribution networks of considerable size. For 
the Texel gas distribution network this can be done in 36 and 
531 seconds respectively. The values obtained are around 
0.9920. This seems to agree with values from the industry 
but both the assumptions made in estimating the edge 
reliabilities and the assumptions made in converting 
reliability to terms that are standard in the industry can be 
investigated further. 

Since computing the all-terminal reliability can be done 
quite fast, it is possible to do some analysis of the network 
using this metric. For example, when a gas distribution 
company is considering upgrading the pipes in certain 
sections of the network, this metric can be used to compare 
the effects of different scenarios on the reliability of the 
network. The increase in pipe quality can be modelled by 
increasing the reliabilities of the edges corresponding to the 
pipes under consideration. 



The all-terminal method works well on this network due 
to the tree-like structure and the low density of the initial 
network. The k-terminal method works well because limited 
reductions in this case have little effect on the pathwidth. 
Furthermore, since in the reduced networks the terminals are 
plentiful and quite evenly distributed, the state remains about 
the same size as it would when computing the all-terminal 
reliability. 

We believe that a low density and many terminals 
throughout the network are general properties of distribution 
networks and that, because of this, this method would work 
well on other distribution networks as well. However, this is 
something that remains to be explored. The extensions and 
improvements mentioned are not complicated and can 
facilitate even more meaningful analysis if implemented. 
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