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Abstract—Opinion dynamics models study how the interaction
among people influences the opinion formation process. In most
opinion dynamics models, only one opinion can exist in the
steady state, which is different from the real-life opinion for-
mation process. In 2009, Shao et al. introduced a Non-Consensus
Opinion (NCO) model, which allows different opinions to coexist
in the steady state. This paper extends the NCO model by
introducing a special type of nodes, namely Byzantine nodes,
to play the role of dishonest people. We perform simulations on
three different network models: small-scale graphs, Erdős–Rényi
random graphs and scale-free networks. We find a new steady
state for the NCO model: the cyclic steady state. The cyclic
behavior of the NCO and Byzantine NCO model is discussed,
including a method to generate networks with extremely long
cycle lengths. Other properties of the Byzantine NCO model,
such as the probability of cyclic behavior and the final opinion
distribution, are also studied. We find that the introduction of
Byzantine nodes generally steers towards a more balanced steady
state and increases the probability of cyclic behavior. The latter
is particularly problematic in communication systems, where the
large cycle lengths may cause a very slow consensus process and
thus stalling future communications.

Index Terms—Opinion models, Complex Networks, Social
Dynamics model, Byzantine nodes.

I. INTRODUCTION

In recent years, the study of social dynamics and group

behavior has been greatly developed. Of great concern is

the spread of opinions in social networks [1]–[3]. Opinion

dynamics is driven by human behavior and includes many

elements, such as individual predisposition, the influence

of other people (social networks playing a crucial role in

this respect), and many others. Different models have been

developed, encompassing different elements of the opinion

formation process.

Most of the opinion models are based on spin models, such

as the Sznajd model [4], the voter model [5], the majority

rule model [6] and the social impact model [7]. These opinion

models use insights from complex network theory, where

nodes in the network represent people and links denote a

relationship between people. A drawback of conventional spin

models is that they usually result in a consensus steady state,

while in real life, different opinions tend to coexist in the

steady state [1], [8].

In 2009, Shao et al. proposed the Non-Consensus Opinion

model (NCO) model, which can be used to research the

opinion dynamics of a group of people [9]. The NCO model

describes the spread of two opinions σ+ and σ
−

in a network,

where each node always has one of the two possible opinions.

Each node re-considers its own opinion at every discrete time

step by looking at the opinions of all its neighbors and its own

opinion. If the majority opinion is different from its current

opinion, the node reverts to the other opinion. If there is no

majority opinion or if the majority is equal to the node’s

opinion, the node’s opinion does not change.

Unlike models based on spin systems, the NCO model

allows for non-consensus steady states. Shao et al. illustrates

the important fact that the NCO model is similar to the

invasion percolation process [10], which means that if the

number of people holding the minority opinion is sufficiently

large, the minority opinion holders can form a stable cluster,

which the dominant opinion cannot invade.

Despite the fact that Shao et al.’s classic NCO model solves

the problem of coexisting opinions in the steady state, the

NCO model still cannot ideally mimic the opinion formation

process because people do not always behave like the nodes in

the NCO model. In 2011, Li et al. proposed an inflexible con-

trarian opinion (ICO) model by introducing stubborn agents

who never change their opinion [11]. Li et al.’s study makes

the NCO model more relevant to real-life social networks. Li

et al. proposed the NCOW model [8] by added a weighting

factor W to the NCO model. The weighting factor W for each

node represents the importance of that person’s opinion in the

decision-making process. Hence, a large W makes that node’s

opinion hard to change.

The NCO model assumes that all nodes are honest and

reliable, but we always meet rascals who lie and make trouble

in real life. In this paper, we extend the NCO model to the

Byzantine NCO model. In the Byzantine NCO model, the

Byzantine node is introduced, which is a new type of node that

plays the role of a liar in a crowd [12]. Unlike ordinary nodes,

Byzantine nodes always communicate the opposite of their

true opinion. Byzantine nodes are often used for modelling

hacked nodes in security systems and communication networks

[13]. One method to detect Byzantine nodes is using opinion

models [14], [15]. Having a thorough understanding of the

Byzantine NCO model can help to improve the Byzantine node

detection algorithm. In particular, we will show that adding
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Byzantine nodes will delay the opinion formation process,

increase the probability of cyclic behavior and the final opinion

fraction is more balanced than without Byzantine nodes.

We start by introducing the NCO model with Byzantine

nodes in Section II. We show examples of cyclic behavior in

Section III and present a method to construct very long cycle

lengths. We discuss the opinion fraction at the steady state in

Section IV and explain how different strategies for selecting

Byzantine nodes influence the opinion fraction at the steady

state in Section V. Finally, we conclude in Section VI.
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Fig. 1. Dynamics of the Byzantine NCO model on a network with N = 10
nodes. Node 2 and 9 are Byzantine nodes, as indicated by the thick, black
border around the square node. The other nodes are normal nodes, indicated
by circles. (a) At t = 1, 8 nodes are assigned with a σ+ opinion (red), and
other nodes with a σ

−
opinion (blue). Byzantine node 2 and node 9 hold a

σ+ opinion, but they declare a σ
−

opinion. This make node 5 to misjudge
its local opinion ratio as σ+ : σ

−
= 3 : 4. Node 5 converts to σ

−
. (b) At

t = 2, node 6 judges it local opinion ratio as σ+ : σ
−

= 2 : 3 and node 6
converts to σ

−
. (c) At t = 3, all nodes hold an opinion that they consider to

be a local majority and stop changing their opinions. The system has reached
a steady state.

II. THE BYZANTINE NCO MODEL

In the NCO model, nodes choose their opinions according to

their own current opinion and that of their neighbors. At each

discrete time t, each node looks at the opinion of its nearest

neighbors in the graph and its own opinion. If the majority

opinion is different from its current opinion, the node reverts

to the other opinion. The NCO model is an example of a

discrete-time model with synchronous updates, because each

node simultaneously decides to keep or to change its opinion.

The Byzantine NCO model introduces Byzantine nodes to

the NCO model, where the Byzantine nodes always declare

an opinion opposite to their true opinion. Fig. 1 shows an

example of the dynamics in the Byzantine NCO model. Note

that regular, i.e. non-Byzantine nodes are depicted as filled

circles, while Byzantine nodes are shown as filled squares,

with a thick black border.

Throughout this work, we simulate the NCO model on three

different kinds of network models: All graphs with N = 7
nodes and L = 10 links (there are 132 non-isomorphic graphs

generated from Nauty and Traces [16]), Erdős–Rényi random

graphs with N = 100 and p = 0.047 and Barabási-Albert

scale-free networks with N = 100, λ = 3 and kmin = 2. On

the graphs with N = 7 nodes and L = 10 links, we perform an

exhaustive operation, where all the 27 = 128 different initial

configurations and all the 27 = 128 different Byzantine node

positions are taken into consideration. Initially on the ER and

SF networks, opinion σ
−

and σ+ are randomly assigned to

all the N nodes with a fraction of f and 1− f , respectively.

Out of all nodes, NB nodes are chosen as Byzantine nodes

according to one of the following strategies:

1) Strategy I: Randomly select NB nodes to be Byzantine

nodes.

2) Strategy II: Select NB nodes with highest degree to be

Byzantine nodes.

3) Strategy III: Select NB nodes with lowest degree to be

Byzantine nodes.

We perform simulations until the system reaches a fixed steady

state or ends up in a cyclic steady state.

III. CYCLIC BEHAVIOR

In a previous study of the NCO model [9], researchers

believe that the opinion network eventually reaches a fixed

steady state. In the fixed steady state, the opinion of each

node in the network becomes fixed, and the opinion network

shows a state of consensus (all nodes are of the same opinion)

or coexistence (both opinions coexist). However, in a few

cases, the opinion of some nodes in the opinion network do

not reach a fixed steady state. Instead, the whole network

constantly oscillates between two different states. We refer

to this phenomenon as cyclic behavior.

The cyclic behavior of the NCO model is relatively simple,

because only cycles with length two have been found. We

show an example of cyclic behavior in the NCO model in

Fig. 2. Nodes 1, 2 and 3 form one group, node 5 and 6 form

another group and each node in each group keeps changing

its opinion after each time step. In this example, the opinion

of node 4 is unchanged.

Fig. 2. Dynamics of a cycle of the NCO model. (a) At t = 1, node 1, 2
and 3 have two σ

−
neighbors node 5 and 6, so their local opinion ratio is

σ+ : σ
−

= 1 : 2. Node 5 has 3 σ+ neighbors and 1 σ
−

neighbor; node 6 has
3 σ+ neighbors. The local opinion ratio for node 5 and 6 are σ+ : σ

−
= 3 : 2

and σ+ : σ
−

= 3 : 1, so node 5 and 6 change their opinion. (b) At t = 2,
node 1, 2 and 3 have two σ+ neighbors node 5 and 6, so their local opinion
ratio is σ+ : σ

−
= 2 : 1. Node 5 has 5 σ

−
neighbors; node 6 has 3 σ

−

neighbor. The local opinion ratio for node 5 and 6 are σ+ : σ
−

= 1 : 4 and
σ+ : σ

−
= 1 : 3, so node 5 and 6 change their opinion. Then the system

switches back to the state at t = 1.

Unlike regular nodes, Byzantine nodes always declare the

opposite of their own opinion. Normal nodes drive the network

to a consensus state, while Byzantine nodes drive the network

to a balanced opinion state. For example, when the network

seems to converge to the positive opinion consensus state,

the sudden change of the opinion of a Byzantine node may

steer the network towards the negative opinion. The Byzantine

nodes make it easier for the network to oscillate between

two opinions. This property of Byzantine nodes makes the

Byzantine NCO model more prone to cyclic behavior with

2
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long cycle lengths. Fig. 3 shows an example of a network

with a cycle length of 6.

Fig. 3. Cyclic behavior in the Byzantine NCO model. The cycle length is 6
because the network state at t = 7 is equal to the network state at t = 1.

To our best knowledge, cycles with a length larger than

two do not exist in the NCO model. But the introduction

of Byzantine nodes allows for longer cycles, as e.g. shown

in Fig. 3. There is, in general, no mathematical formula for

the cycle length for a given network with a certain initial

opinion configuration. However, we found some fascinating

cases while studying cyclic steady states, and selected a few

to show.

A. Sunflower Graphs

In this section we consider so-called sunflower graphs,

defined on 2M nodes. To construct a sunflower graph, we

start with a ring graph, consisting of M Byzantine nodes.

Then M regular nodes are added, such that each regular node

connects to two adjacent Byzantine nodes, see Fig. 4. As initial

condition, one Byzantine node and an adjacent regular node

are assigned the positive opinion σ+ and all other nodes start

with the negative opinion σ
−

.

Fig. 4. A sunflower graph with N = 26 nodes, L = 39 links and NB = 13
Byzantine nodes. The cycle length of this graph is 52.

The cycle length for sunflower graphs with N nodes, where

N is an even integer not less than 6, satisfies

Csunflower graph =

{

N if N/2 is an even number

2N if N/2 is an odd number
(1)

Using sunflower graphs, we can generate networks with a

cycle length of 4n (n ≥ 2, n ∈ N).

B. Chain of diamond graphs

The cycle length of the sunflower graph increases linearly

with the number of nodes. We also found a network with

a nonlinear increase in the cycle length as a function of

the number of Byzantine nodes. This network consists of a

chain of connected diamond-like graphs. Each diamond graph,

denoted by D, consists of a path of 5 regular nodes, where

each of the regular nodes is connected to a pair of Byzantine

nodes. Depending on how the diamond graphs are connected,

we can divide the special graphs into two types.

1) Type I: The outer nodes of a diamond graph are chained

with another diamond graph, as shown in Fig. 5. At the initial

state, the leftmost regular node holds a σ+ opinion, while all

other nodes hold a σ
−

opinion.

……

M D

Fig. 5. Graph type I with M normal diamond graphs D chained together.

2) Type II: To generate a Type II graph, we first connect M
diamond graphs using the method in Type I, then E diamond

graphs are added where one outer regular node in the new

diamond graph is connected with one Byzantine node in the

last diamond graph in the existing network, as depicted in

Fig. 6.

…… ……

M D E D

Fig. 6. Graph type II with M normal diamond graphs D and E differently
connected diamond graphs D.

Table I gives the cycle length for chains of diamond graphs,

of several lengths. When M = 21 and E = 1 (resulting in

a graph on 22 × 7 = 154 nodes), the cycle length reaches

22131760. Using diamond graphs, we use fewer nodes to

achieve long cycles compared to sunflower graphs. Even for

the regular diamond graphs without any type II connections,

the cycle length pattern in Table I is highly irregular and it is

presumably very hard to derive a general formula.

C. Network combination

We propose network combination as another method to

generate networks with long cycle lengths. The idea is that

we combine several different networks into one connected net-

work, without breaking the cyclic behavior of each component.

However, connecting the components directly can easily break

the cyclic behavior of each individual graph. Thus, we also add

3
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TABLE I
CYCLE LENGTH FOR GRAPHS CONSISTING OF CONCATENATED DIAMOND GRAPHS D. FOR E = 0, THE GRAPH ONLY CONSISTS OF TYPE I CONNECTIONS.

Number of D (M+E) 2 3 4 5 6 7 8

Cycle length (E = 0) 10 1 20 26 102 136 28

Cycle length (E = 1) 1 1 1 38 1,178 520 174

Cycle length (E = 2) 1 10 1 190 664 366

Cycle length (E = 3) 1 10 1 190 170

Number of D (M+E) 9 10 11 12 13 14 15

Cycle length (E = 0) 3,372 28 2,615 4,644 179 1,113 28

Cycle length (E = 1) 5,388 864 11,832 612 45,918 110,490 56,022

Cycle length (E = 2) 402 4,796 9,514 24,620 38,360 69,602 61,308

Cycle length (E = 3) 1 7,152 1,490 6,320 89,974 26,449 93,278

Number of D (M+E) 16 17 18 19 20 21 22

Cycle length (E = 0) 18 179 5,682 28 126 28 3,769,654

Cycle length (E = 1) 756 179 347,177 179 6,620,424 722,301 22,131,760

Cycle length (E = 2) 566,850 390,278 1,952,400 314,951 76,835 5,000,520 8,229,700

Cycle length (E = 3) 128,010 89,352 255,249 918,374 1,138,078 1,207,604 11,880,976

a mirror of each component with the opposite initial opinion.

We then connect two adjacent components and their mirrors

by adding two links, such that each component is connected to

its neighbors and their mirrors, but not to its own mirror. Fig.

7 demonstrates how five components are connected together

without breaking the cycles of each individual component. The

cycle length of the combined network is the least common

multiple of the cycle lengths of the components.

Fig. 7. The combined network is created by connecting five graphs (and
their mirrors), whose individual cycle lengths are 17, 19, 21, 23 and 50. The
combined network has a cycle length of lcm(17, 19, 21, 23, 50) = 7800450.

In this way, one can connect an arbitrary number of com-

ponents. The sunflower graphs provide us with networks with

a cycle length of 4n, where n ≥ 2 is a positive integer.

The least common multiple of prime numbers is the product

of them. Combining m sunflower graphs with cycle lengths

4n1, 4n2,...,4nm, where n1, n2,...,nm are all distinct prime

numbers, we obtain a combination network with a cycle length

of lcm(4n1, 4n2, ..., 4nm) = 4 ×
∏m

i=1
ni, while using only

2× (N1 +N2 + ...+Nm) nodes.

The large cycle lengths are of great concern in com-

munication networks, where a consensus must be reached.

Byzantine nodes may disrupt the opinion formation process,

leading to extremely long communication times which may

stall all future communications. The way forward is to design

communication networks that can withstand these Byzantine

attacks, but this is outside of the scope of this paper.

D. Occurrence of the cyclic behavior

The introduction of Byzantine nodes not only produces long

cycles, but also increases the probability of cyclic behavior.

Fig. 8 illustrates the probability of cyclic behavior pc on ER

networks with N = 100, p = 0.047 as a function of the

initial negative opinion fraction f , for a different number of

Byzantine nodes. From Fig. 8a, we find that for the NCO

model without Byzantine nodes, the pc(f) curve has a peak

at f = 0.5 and the networks show cyclic behavior in the

interval (0.39, 0.61), which roughly overlaps with the interval

of the coexistence steady state (see Section IV). In Fig. 8b,

when there are 10 Byzantine nodes, the cyclic behavior occurs

in a wider interval. In Fig. 8c, as the number of Byzantine

nodes NB increases, the pc curve shows a ‘W’-shape; both the

middle and the left and right sides show a relatively high pc.

In Fig. 8d, when almost all nodes are Byzantine, the peak

is situated at the left and right side. In the side area where

f is close to f = 0 or f = 1, most nodes in the network

start with the same opinion. Due to the lying nature of the

Byzantine nodes, most nodes in the network will misjudge

the local majority opinion and thus change their opinion, at

which the minority opinion becomes the majority opinion. The

node’s opinion will continue to change, oscillating between the

two opinions and reaching a cyclic steady state.

IV. OPINION FRACTION AT STEADY STATE

For the NCO model, the final opinion fraction is an essential

element of steady-state behavior because the final opinion

fraction reflects which opinion is the majority opinion in the

steady state. Shao et al. finds that there is a critical threshold fc
that distinguishes between consensus and coexistence in the

steady state [9]. For f < fc, the network tends to reach a

consensus whereas both opinions tend to coexist if f > fc.

The final opinion fraction F is defined as the fraction of

nodes holding a specific opinion among all nodes when the

NCO model reaches a steady state, denoted as

F = nσ
−

/N (2)

where nσ
−

is the number of nodes holding the σ
−

opinion

and N is the total number of nodes in the network.

4
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0.0 0.2 0.4 0.6 0.8 1.0
f

0.0000
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030

p c

(a)

0.0 0.2 0.4 0.6 0.8 1.0
f

0.0000
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0016

p c

(b)

0.0 0.2 0.4 0.6 0.8 1.0
f

0.0015

0.0020

0.0025

0.0030

p c

(c)

0.0 0.2 0.4 0.6 0.8 1.0
f

0.0

0.2

0.4

0.6

0.8

1.0

p c

(d)

Fig. 8. The probability of occurrence of cyclic behavior pc as a function
of the initial fraction f of σ

−
opinion on ER networks with N = 100,

p = 0.047, and the placement of Byzantine nodes follows Strategy I for (a)
no Byzantine nodes, (b) 10 Byzantine nodes, (c) 20 Byzantine nodes and (d)
90 Byzantine nodes.

In the cyclic steady state, we define the final opinion fraction

as the mean value of the opinion fraction of each state in the

cycle:

F =

∑C

t=1
nσ

−
,t/N

C
(3)

where C is the length of the cycle and nσ
−
,i is the number

of nodes holding the σ
−

opinion at the ith state in the cycle.

We first perform simulations on the small graphs with

N = 7 nodes and L = 10 links. Fig. 9a shows the distribution

of the fraction of nodes with the negative opinion σ
−

at the

steady state for the network without Byzantine nodes. The

orange curve and the red violin plot show the mean value

and the probability density of the F at different values of

f , respectively. We find that F is a monotonically increasing

function of f with a symmetry around (f, F ) = (0.5, 0.5).
For f ∈ {0, 1/7, 2/7}, σ

−
is the minority opinion and

the network tends to reach a positive consensus, with only

a few exceptions. The coexistence probabilities in Fig. 9a

show a sharp increase for F at f = 2/7 to f = 3/7. For

f ∈ {3/7, 4/7}, the majority and minority opinion are close

in number and both opinions coexist in most cases.

Fig. 9b shows that for f = 0 the main lobe of the violin plot

is around F = 0, which means that for graphs with no Byzan-

tine nodes, the graph almost always reaches a consensus when

one opinion holds an absolute majority position. However, for

f ∈ {1/7, 2/7}, the main lobes are located in F ∈ [1/7, 6/7],
which means it is hard to reach consensus when Byzantine

nodes are added. As more and more Byzantine nodes are

added to the system, Fig. 9c and Fig. 9d show that the main

lobes of the violin plot are all located in the coexistence area.

When there are many Byzantine nodes, the system reaches a

0 1/7 2/7 3/7 4/7 5/7 6/7 1
f

0.0
0.2
0.4
0.6
0.8
1.0

F

(a)

0 1/7 2/7 3/7 4/7 5/7 6/7 1
f

0.0
0.2
0.4
0.6
0.8
1.0

F

(b)

0 1/7 2/7 3/7 4/7 5/7 6/7 1
f

0.0
0.2
0.4
0.6
0.8
1.0

F

(c)

0 1/7 2/7 3/7 4/7 5/7 6/7 1
f

0.2

0.4

0.6

0.8

F

(d)

Fig. 9. Violin plot of graphs with N = 7, L = 10, the orange line shows
the average value of F for different f , the red area shows the distribution of
F for different f . The white point is the median of F for different f . (a)
NB = 0, (b) NB = 2, (c) NB = 4, (d) NB = 7.

coexistence state, regardless of the initial opinion fraction f .

When all the nodes are Byzantine nodes, as shown in Fig. 9d,

it is impossible for the system to reach a consensus state. Thus,

the introduction of Byzantine nodes balances the fraction of

different opinions in the steady state. For the Byzantine NCO

model, coexistence is a more stable state than consensus when

a significant number of nodes are Byzantine nodes.

0.0 0.2 0.4 0.6 0.8 1.0
f

0.0

0.2

0.4

0.6

0.8

1.0

F

0.000

0.001

0.002

0.003

0.004

s 2
Fig. 10. Normalized size of the largest cluster s1 (orange dashed line), the
second-largest cluster s2 (red full line) and the fraction of σ

−
nodes F (blue

dots) in the steady state for an ER network with N = 10000 and p = 0.0004
without Byzantine nodes.

Fig. 10 shows the normalized size of the largest and second-

largest cluster s1, s2 and final opinion fraction F . Shao et al.

[9] showed that, when the initial fraction of one opinion is

below a certain critical threshold fc, which is characterized

by the sharp peak of s2, s1 approaches 0, which means only

the majority opinion can form a stably existing cluster. Once

f is above fc, s1 increases sharply with f . Even though the

negative opinion is still the minority, a large, stable minority

opinion cluster is formed, which cannot be penetrated by the

5
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positive opinion. Thus, a steady state with stable coexistence

of minority and majority opinion appears [9].

0.0 0.2 0.4 0.6 0.8 1.0
f

0.0
0.2
0.4
0.6
0.8
1.0

F

(a)
0.0 0.2 0.4 0.6 0.8 1.0

f

0.0
0.2
0.4
0.6
0.8
1.0

s 1

(b)

0.000
0.001
0.002
0.003
0.004
0.005
0.006

s 2

Fig. 11. (a) The final fraction of σ
−

nodes F and (b) the normalized size of
the largest cluster s1 (dashed line) and second-largest cluster s2 (full line) for
ER networks with N = 10000, p = 0.0004 and no Byzantine nodes (blue
line), 1000 Byzantine nodes (orange line) and 2000 Byzantine nodes (green
line).

Fig. 11 gives the final opinion fraction F and the normalized

size of the largest and second-largest σ
−

cluster s1 and s2 on

ER networks with N = 10000 and p = 0.0004. Increasing

the number of Byzantine nodes in Fig. 11 flattens the F curve

and moves the peak of the s2 curve to the left. This indicates

that the introduction of Byzantine nodes balances the opinion

fractions at the steady state and reduces the value of the critical

threshold fc, which is the smallest f needed to form a stably

existing minority opinion cluster.

Fig. 12. Normalized size of the largest cluster s1 for ER networks with
N = 100, p = 0.047 and the number of Byzantine nodes varies between 0
and 100.

Fig. 12 and Fig. 13 depict the normalized size of the largest

and second-largest cluster s1 and s2 for ER networks with

N = 100, p = 0.047 and the number of Byzantine nodes is

varied between 0 and 100. As the number of Byzantine nodes

increases, the critical threshold fc in Fig. 13 moves to the left.

When there are only a limited number of Byzantine nodes in

the system, consensus remains possible but becomes rarer as

the number of Byzantine nodes increases. For a larger number

of Byzantine nodes NB ≥ 40, the s2 curve no longer shows

an obvious peak in f ∈ [0, 1] and s1(f) does not approach 0

in f ∈ [0, 1]. Hence, the network tends to reach a coexistence

steady state for any initial opinion fraction f and a minority

opinion cluster can stably exist for all f ∈ [0, 1]. If NB is

further increased, i.e. for NB ≥ 70, Fig. 13 shows that s2(f)
again has a clear peak but this time it does not correspond

with transition for s1(f), as is clear from Fig. 12.

Fig. 13. Normalized size of the second-largest cluster s2 for ER networks
with N = 100, p = 0.047 and the number of Byzantine nodes varies between
0 and 100.

Fig. 12 shows that the maximum value of s1 becomes

smaller and smaller, while increasing the number of Byzantine

nodes. This indicates that the maximum size of the largest

clusters in the network becomes smaller. Thus, the introduction

of Byzantine nodes prevents the formation of large major-

ity opinion clusters. When there is a significant number of

Byzantine nodes, the normalized largest cluster s1 is no longer

a monotonically increasing curve because of the increased

probability of cyclic behavior around f = 0 and f = 1.

Fig. 14. The final opinion fraction F for (a,c,e) ER networks with N = 100,
p = 0.047 and (b,d,f) SF networks with N = 100, kmin = 2, λ = 3. The
number of Byzantine nodes NB is varied between 0 and 100 and is selected
according to (a,b) Strategy I, (c,d) Strategy II and (e,f) Strategy III.

V. BYZANTINE NODE SELECTION STRATEGIES

So far, we have selected the Byzantine nodes randomly in

the network (according to Strategy I, see Sec. II). Additionally,
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we select nodes to be Byzantine based on the largest degree

(Strategy II) and lowest degree (Strategy III). Fig. 14 depicts

the final opinion fraction F for ER and SF networks for the

different Byzantine nodes selection strategies. Comparing the

top row (random selection) to the bottom row (lowest degree)

of Fig. 14, the curves in the bottom plots with a small number

of Byzantine nodes are close together, implying that Byzantine

nodes with a low degree have little influence on the final

opinion fraction. On the other hand, the middle row suggests

that high-degree nodes have a much larger impact on the final

opinion fraction F . We conclude that a Byzantine node with

more neighbors has more chance to propagate the opposite

opinion than a Byzantine node with fewer connections.

0 10 20 30 40 50 60
NB

0.0

0.1

0.2

0.3

0.4

f c

(a)

0 10 20 30 40 50 60
NB

0.0

0.1
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0.3

0.4

f c

(b)

Fig. 15. The critical threshold fc as a function of Byzantine node number
NB on (a) ER networks with N = 100, p = 0, 047 and (b) SF networks
with N = 100, kmin = 2, λ = 3 for Strategy I (blue curve), Strategy II
(orange curve) and Strategy III (green curve).

Fig. 15 shows how the critical threshold fc on ER networks

(N = 100, p = 0.047) and SF networks (N = 100, kmin = 2,

λ = 3) changes with the number of Byzantine nodes NB . Both

for the ER and SF network, the critical thresholds fc change

fastest when strategy II is taken and slowest for strategy III.

For ER networks, the critical threshold fc disappears (i.e.

reaches zero) if the number of Byzantine nodes equals 42, 34

and 54 for strategy I, II and III, respectively. For SF networks,

the critical threshold fc reaches 0 only when strategy I is taken.

For strategy II, the critical threshold first decreases rapidly, and

then becomes unmeasurable due to the increase in probability

of cyclic behavior. For strategy III, the critical threshold fc
decreases slowly and then also becomes unmeasurable due to

the large probability of cyclic behavior. Taking NB ∈ [0, 20],
we find that using different Byzantine node selection strategies

is more significant for SF networks than for ER networks.

The reason is that the degree distribution of ER networks is

binomially distributed, while SF networks possess some high-

degree nodes. Byzantine nodes with a large degree have a

more significant influence on the behavior of the Byzantine

NCO model. Due to the larger degree variation in SF networks,

following strategy II and strategy III have a larger impact for

SF networks than for ER networks.

VI. CONCLUSION

In this paper, we extended the Non-Consensus Opinion

(NCO) model proposed by Shao et al. [9]. We introduced

Byzantine nodes into the NCO model and studied the cyclic

behavior of the Byzantine NCO model and the opinion fraction

at the steady state. The Byzantine NCO model shows rich

cyclic behavior, which we demonstrated by showing several

examples of graphs with extremely long cycle lengths. For

general graphs, we find that the introduction of Byzantine

nodes generally increases the probability of cyclic behavior.

For networks with a large number of Byzantine nodes, cyclic

behavior occurs with a high probability when one opinion

holds the absolute majority. Additionally, we found that the

introduction of Byzantine nodes also reduces the critical

threshold of the NCO model and makes the coexistence of

different opinions easier. Both for ER and SF networks, the

impact of Byzantine nodes on the final opinion fraction of the

NCO model is the largest when Byzantine nodes are selected

based on largest degree. Due to the large hubs in SF networks,

choosing the hubs as Byzantine nodes has a large impact on

the opinion fraction in the steady state.
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data fusion against data falsification attacks,” Computational Social

Networks, vol. 5, no. 10, 2018.
[13] H. J. LeBlanc, H. Zhang, S. Sundaram, and X. Koutsoukos, “Consensus

of Multi-Agent Networks in the Presence of Adversaries Using Only
Local Information,” in Proceedings of the 1st International Conference

on High Confidence Networked Systems, ser. HiCoNS ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 1–10.

[14] Y. Shang, “Consensus and Clustering of Expressed and Private Opin-
ions in Dynamical Networks Against Attacks,” IEEE Systems Journal,
vol. 14, no. 2, pp. 2078–2084, 2020.

[15] C. Alcaraz, “Cloud-Assisted Dynamic Resilience for Cyber-Physical
Control Systems,” IEEE Wireless Communications, vol. 25, no. 1, pp.
76–82, 2018.

[16] B. D. McKay and A. Piperno, “Practical graph isomorphism, ii,” Journal

of Symbolic Computation, vol. 60, pp. 94–112, 2014.

7

Authorized licensed use limited to: TU Delft Library. Downloaded on November 08,2022 at 09:10:34 UTC from IEEE Xplore.  Restrictions apply. 


