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a b s t r a c t 

Water Distribution Networks (WDNs) are often susceptible to either accidental or deliberate contami- 

nation which can lead to poisoned water, many fatalities and large economic consequences. In order to 

protect against these intrusions or attacks, an efficient sensor network with a limited number of sen- 

sors should be placed in a WDN. In this paper, we focus on optimal sensor placements by introducing 

two greedy-based algorithms in which the imperfection of sensors and multiple objectives can be taken 

into account. The algorithms were tested using a medium scale urban WDN. It is shown that our algo- 

rithms are able to find sensor placements in reasonable time and that its solutions are close to optimal. 

Furthermore, relaxing the often used assumption that sensors work perfectly results in different sensor 

placements than were found before, indicating the importance to take sensor imperfection into account 

when placing sensors. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Water Distribution Networks (WDNs) form a crucial part in our

life by providing clean, safe drinking water to billions of people

around the world. A WDN supplies fresh water from water sources

to households, companies e.g. using a large hydraulic system. This

system or network consists of many elements such as reservoirs,

tanks, treatment facilities, pumps, pipes, and valves. These net-

works are diverse and can be very large, consisting of hundreds or

thousands of kilometers of underground pipes. An increasing num-

ber of people make use of water from such a system every day and

rely on the safety and the quality of water in their lives or work.

If a problem arises within the WDN, the impact on society can be

enormous. 

There are several threats to a WDN which can be divided into

physical and chemical disruptions. Physical disruptions, such as

leaking pipelines, failing pumps or intentional attacks on the net-

work itself, will have a big economical impact but are not con-

sidered a serious risk to human beings. The biggest threat to a

population comes from intentional or accidental chemical contam-

ination within the water network. In order to protect the pub-

lic from such intrusions it is necessary to incorporate an early
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arning system with a sensor network to monitor the quality of

he drinking water effectively and efficiently in a WDN. Together

ith EPA (the United States Environmental Protection Agency),

urray et al. (2009) estimated that a contamination warning sys-

em could save half of the expected fatalities and over 19 billion

ollars of associated economic impact on a water network of a

arge municipality. 

Accidental contamination of a WDN may occur in many ways

ncluding breaking of pipelines. However, a much bigger and more

ethal threat to a society happens with the intentional poison-

ng of drinking water by criminals or terrorists. In every volume

f the report The World’s Water Gleick and Heberger (2014) , all

nown conflicts and threats which involve water resources or wa-

er systems are enumerated. These upcoming threats show the rel-

vance of a good warning system. A sensor system should be able

o quickly detect intrusions in the WDN and therefore reduce sick-

ess, fatalities and the associated economic consequences. Due to

ost and maintenance reasons, it is of course not possible to place

ensors at every place in the network. Hence, a small number of

ensors need to be placed efficiently to achieve an effective mon-

toring. Several objectives and different algorithms have been con-

idered to achieve an optimal or sub-optimal placement of sensors.

n previous works, it has mostly been assumed that the sensors de-

ect every contamination (100% reliability). This is most likely an

nrealistic assumption and with only a limited number of sensors

https://doi.org/10.1016/j.compchemeng.2018.10.021
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o be placed in the WDN, the unreliability of one sensor could have

evere consequences. 

In this work, we introduce new heuristic algorithms for solv-

ng the sensor placement problem when sensors are not 100% re-

iable, making use of a maximum covering model with weighted

dges. Further, we quantify the effect of the reliability of imper-

ect sensors on the optimal sensor placement and explore the ef-

ect of multiple objectives on the sensor placement. A basis of this

esearch is a recent paper by Palleti et al. (2016) in which they

esign a perfect-sensor network using a greedy heuristic based on

he set covering problem (SCP) to be able to detect the contami-

ation and identify the source of the contamination. While max-

mizing the probability of detection has always been one of the

ain objectives when designing a sensor network, the objective

f identifying the source of the attack is quite new in literature.

hen the point of intrusion is known, it is possible to take action

nstantly and to get some parts of the water network back to oper-

tion sooner. Besides these objectives of maximizing detection and

dentification, we introduce objectives to also include objectives to

inimize the time to detection and the impact of a contamination

s well. 

The organization of the paper is as follows. In Section 2 an

verview of the related work on sensor placement is given, and

he novelty of our work compared to the literature is described. In

ection 3 , the main assumptions and the mathematical formula-

ion of the sensor placement problem are described, as well as the

reedy algorithms proposed to solve this problem. Section 4 con-

ains the main results of applying the developed algorithms on a

ase study focusing on the Bangalore WDN. Finally, Section 5 de-

cribes the main conclusions and suggestions for future research. 

. Related work 

.1. Perfect sensor placement 

Several researchers have addressed the sensor placement prob-

em in WDNs considering different objectives assuming perfect

ensors. It was first mentioned by Lee et al. (1991) , and Lee and

eininger (1992) where they maximized the demand coverage

y sensors. Kessler et al. (1998) considered level of service as

n objective for sensor location in WDNs. Propato (2006) de-

eloped a mixed-integer linear program to identify optimal sen-

or locations for early warning against accidental and intentional

ontaminations in drinking water distribution systems. The gen-

ral model can be applied to unsteady hydraulic conditions. Later,

hastri and Diwekar (2006) presented a two stage stochastic pro-

ramming approach for sensor placement in WDNs by incorpo-

ating nodal demand uncertainties in the objective function. Also,

ico-Ramirez et al. (2007) proposed a two stage mixed integer pro-

ram which minimizes the expected population at risk and the

ost of sensors. Mukherjee et al. (2017) presented a new approach

o solve sensor placement problem in WDNS by incorporating un-

ertainties in nodal demands and attack locations. 

One of the main research works on sensor placements is the

attle of the Water Sensor Networks (BWSN) ( Ostfeld et al., 2008 )

hich was a multi-objective network design competition. In this

ompetition, fifteen independent teams have participated to design

he sensor network. They considered the following objectives in

heir formulations: minimize the detection time, the population af-

ected and the amount of contaminated water consumed and max-

mize the detection likelihood with a limited number of sensors. In

his competition the best four solution methods based on the num-

er of non-dominated 

1 solutions are obtained ( Berry et al., 2006;
1 A solution is non-dominated if none of the objective functions can be improved 

n value without degrading some of the other objective values. 

i  

s  

1  

s  
orini et al., 2006; Krause et al., 2006; Wu and Walski, 2006 ). A

ajor limitation of the BWSN formulation is the way non-detected

vents were handled. Events which could not be detected were ig-

ored which could result in very promising results on impact re-

uction with a very small chance of detection. 

One of the four solution methods was provided by the re-

earch team of Berry et al. (2006) , which performed a lot of re-

earch on sensor placement in WDNs. They designed a mixed-

nteger programming (MIP) formulation which was very similar to

he p -median facility location problem. In that problem, p facil-

ties should be placed and each customer should be assigned to

ne facility in order to minimize the distance between the facility

nd the customer. In the formulation of Berry et al. (2006) , each

ontamination scenario should be detected by one ’witness’ using

ome number of sensors in order to minimize the impact over all

ontamination scenarios. The ’witness’ is defined such that it is the

rst sensor in the network to detect the contamination or it is a

ummy location, which means it is a non-detection. Several opti-

al methods and heuristics are introduced by the research team.

his MIP formulation and heuristic solution methods formed the

asis of the most used sensor placement toolkit in practice, the

EVA-SPOT Toolkit ( Hart et al., 2008 ). 

Further, Laird et al. (20 06, 20 05) and Perelman and Ost-

eld (2013) investigated the problem of contamination source iden-

ification based on the sensor deployment in the network. How-

ver, their approaches are useful only if the amount of contami-

ant introduced into the WDN is known. Also, it is also difficult

o obtain the unique solution because of the limited number of

ensor measurements available. Recently Palleti et al. (2016) used

 new and different approach to the sensor placement prob-

em which satisfy observability and identifiability conditions. They

ere interested in the objectives of detecting the attack and iden-

ifying the source of the attack. Observability refers to the ability

f the sensor network to detect the contamination where as iden-

ifiability refers to the ability of the sensor network to identify the

xact location of the intrusion. 

.2. Imperfect sensor placement 

The number of papers that take imperfection of sensors into

ccount for the sensor placement problem in WDNs, is quite lim-

ted. For instance, a very recent survey paper, see Hu et al. (2018) ,

nly mentions one paper, namely Comboul and Ghanem (2013) ,

hat considers sensor imperfection, from a list of 18 papers. Like-

ise, the survey paper Rathi and Gupta (2014) , only mentions 3

apers, Berry et al. (2009) , Xu et al. (2010) , and again Comboul and

hanem (2013) , out of a list of 23 papers that deal with imperfect

ensors. In this subsection we will briefly discuss these papers and

xplain how our work differs from it. 

As the data analysis inside a sensor works with some range

r threshold, there is a fair chance not to detect every intru-

ion. For example when the contamination concentration has be-

ome too low at that point in the network. Ostfeld and Sa-

omons (2004) and Weickgenannt et al. (2010) incorporated these

hresholds in their formulation, but the sensors still work perfectly

bove some threshold. Other researchers just only considered large

nough contamination events to overcome this problem. 

In the previous section, the adjusted p-median facility location

roblem introduced by Berry et al. (2006) was explained. In later

ork of Berry et al. (2008) , they extended their work by allow-

ng the sensors to not detect every contamination. They assign

alse negative probabilities to each sensor location and change the

mpact of an intrusion into an expected impact. An intrusion at

ome point is now with some probability first detected by sensor

, with some probability by sensor 2, and so on and finally with

ome probability not detected at all. In contrast to the standard
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BWSN formulation, they did add penalty costs to non-detections.

In Berry et al. (2008) , the formulation is extended for multiple

sensor types and thus multiple different probabilities of detecting

false negatives across the network. In Berry et al. (2009) , experi-

ment with a number of solution methods to deal with imperfect

sensors and conclude that it is worth using optimization methods

that are aware of the sensor imperfection as more robust solutions

are found. Krause et al. (2008) describe their contribution to the

BWSN of Krause et al. (2006) along with several extensions. They

show ways to handle multi-objective optimization by scaling all

objectives and also how to handle sensor failures. Imperfect sen-

sors can be implemented in the framework they described by us-

ing a random binary variable associated per location which indi-

cates if a sensors works or not. In that way, the objective func-

tion is changed with an extra expectation over all possible fail-

ure scenarios as the average impact changes per different failure

scenario. In practice, this implementation only worked with a low

failure probability and at most one sensor failure per scenario, ac-

cording to the paper, as the number of different failure scenarios

can increase rapidly. Results of this implementation have not been

given. 

In a research by Xu et al. (2010) , a two-stage model is pro-

posed to tackle the problem that sensors in a WDN may provide

false positive and false negative signals. They combine a facility

location model with Bayesian networks such that the probabil-

ity that a contamination goes undetected and the false alarm rate

are minimized. Comboul and Ghanem (2013) take sensors imper-

fection into account but imperfection is quanitifed by looking at

one sensor i.e, the one that can detect the contamination at the

earliest. Also, they assume that detection probability is function

of the contaminant concentartion. Preis and Ostfeld (2008) and

Shen et al. (2014) coped with the unreliability by using detection

redundancy as an objective. This means that most contaminations

should be detected by more than one sensor which makes sure

that when a sensor fails, other sensors can still detect the contam-

ination. 

To summarize, limited works exist in the literature on the im-

perfect sensor placement. The novel contributions of our work are

as follows. 

• A method for determining optimal placement of imper-

fect sensors, based upon a maximum covering model with

weighted edges. So far, in literature, the maximum covering

model has only been applied for perfect sensors. Note that

Xu et al. (2010) considered imperfect sensors, but for the

placement of sensors, perfection of sensors was assumed. 
• Optimization of a weighted combination of four objectives. Ex-

isting papers dealing with imperfect sensors only optimize one

objective. For instance, in Berry et al. (2009) either “mass con-

sumed” or “population exposed” are optimized. 
• Incorporation of identification probability objective. Source

identification, one of the objectives of our research, is used to

make sure that the problem can be quickly found and fixed.

By identifying the source, it is possible to close some valves or

pipelines to make sure that the damage to other parts of the

network is minimized and that other parts of the water net-

work can get back to operation sooner. Therefore, this objec-

tive can also be seen as an important practical objective. This

includes a method for giving an upper bound for this proba-

bility. Berry et al. (2009) and Comboul and Ghanem (2013) do

not consider identification probabilities. Xu et al. (2010) does,

but only implicitly through the use of Bayesian networks. We
derived an explicit expression for the identification probability. r  
. Design for placement of imperfect sensors 

In this section, we list the most important assumptions used

n this paper in Section 3.1 . Then we will mathematically define

he sensor placement problem and the objective formulations in

ections 3.2 and 3.3 . Afterwards, several solution methods for this

roblem will be presented in Sections 3.4, 3.5 and 3.6 . 

.1. Main assumptions 

• A typical WDN consists of reservoirs, tanks, valves, pumping

stations, pipes and fire hydrants etc. As most of the network

is burried underground, only a few components of WDN are

present above the ground such as reservoirs, tanks, valves and

pumps. We assume that the above ground components are

more easily accessible for the attackers and considered them

as potential target for the contamination ( Palleti et al., 2016 ).

These components are termed as vulnerable nodes. Therefore,

it is assumed that only a subset of nodes are considered as the

potential target for an attack. An attack can happen on each

vulnerable node with equal probability. As long as the contam-

ination is not detected, contamination will be added to the net-

work at the intrusion point. 
• The contamination will travel through the network with the

same speed as the water does. 
• It is assumed that each sensor in the network will have

the same given probability p of detecting the contamination:

0 ≤ p ≤ 1. Besides that, the detection of an attack by a certain

sensor is independent of the detection of the attack by other

sensors. 
• The sensor imperfection is not necessary related to chemical

properties but can also reflect the impact of cyber attacks. For

instance, in 2015, the U.S. States ICS-CERT (Industrial Control

Systems Cyber Emergency Response Team) received and re-

sponded to 295 incidents ( ICS-CERT, 2016 ). The Water Sector

account for 8.5% of these incidents. Therefore it is assumed that

a sensor might be imperfect, namely, that as a result of cyber

attacks, the sensor readings might no longer be reliable. 
• The detection of an attack by a certain sensor is independent of

the detection of the attack by other sensors. 
• False positives will not be considered. The effect of a false pos-

itive reading by a sensor is negligible with only some economic

impact compared to the consequences of a real contamination

which is not detected. 
• A sensor which is able to detect the contamination will imme-

diately raise an alarm. At this time of detection, it is assumed

that several actions will be taken directly such that no more

contaminated water will be consumed. 

.2. Sensor placement formulation 

We consider a WDN in which water flows from certain sources

r tanks to the customers. This network can be represented as a

raph G = (V, E) , where the nodes V represent sources, demand

oints, and junctions in the network. Pumping stations, treatment

lants, valves and fire hydrants are also illustrated as nodes. E ,

he set of edges, represents all the pipes between the different

odes. A specific demand pattern introduces flows on the net-

ork. The directions of these flows can be modelled by making

he graph directed. In this study, EPANET 2 ( Rossman, 20 0 0 ) soft-

are is used to simulate the WDN to obtain the corresponding

ow directions. A WDN typically consists of hundreds to tens of

housands nodes and pipes. A small subset of the set of vertices

s considered to be vulnerable or accessible for an attack. In our

esearch, the same classification for a vulnerable node is used as
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Fig. 1. The Ex-1 network with two vulnerable nodes and three demand nodes. 
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as done by Palleti et al. (2016) , i.e. the vulnerable nodes are wa-

er reservoirs and tanks from which water can flow, pumping sta-

ions, treatment plants and valves. The set of m vulnerable nodes

s denoted by V 

′ . 
Sensors can be placed on all nodes j in the set { V �V 

′ }. When a

irected path exists from vulnerable node v to node j , a sensor at

ode j is able to detect a contamination on node v . The probabil-

ty that the sensor actually detects the contamination is denoted

ith p . If p equals 1, the sensor is considered to be perfect. A sen-

or placement X is a subset of the set of possible sensor locations.

he number of sensors to be placed in the network is denoted by

 . So, from the set { V �V 

′ }, a subset X of size B should be picked.

his should be done such that the objective formulation used in

ur research is maximized. The objective function f does not only

epend on the sensor placement but also on the probability p that

 sensor detects the contamination. Many different objectives can

e taken into account. The general sensor placement formulation

an be written as follows. 

ax f (X | p) (1) 

.t. X ⊆ { V \ V 

′ } (2) 

| X | = B (3) 

.3. Objective formulations 

In this paper, we consider four different objectives: the network

robability of detection ( D ), the network probability of identifica-

ion ( F ), the average time to detection ( T ) and the estimated im-

act of an attack ( Z ). The first two need to be maximized, the

ast two minimized. Each objective is scaled between 0 and 1 and

eights w are used, depending on which objective is thought to be

ore important. We will elaborate how values for the objectives

an be derived when sensor uncertainty plays a role. For simplic-

ty, all weights are put to 1 
4 . In general, the objective formulation

f Eq. (1) can be written as follows. 

ax f (X | p) = max w D D + w F F + w T (1 − T ) + w Z (1 − Z) (4) 

One example will be used in the next sections to illustrate

he whole methodology. We consider the simple water distribution

etwork of Fig. 1 , which has two vulnerable nodes, v 1 and v 2 , and

hree demand nodes, j 1 , j 2 and j 3 . This network will be called the

x-1 Network. 

Water in this network flows from node v 1 to node j 3 via nodes

 1 , j 2 and v 2 . Data concerning the flow time in hours in this net-

ork can be seen in Fig. 1 . It takes in total 8 h for the water to

ravel from v 1 to j 3 . The demand at each of the three demand

odes is equal to one unit per hour. In this example, sensors can

e placed on nodes j 1 , j 2 and j 3 and we assume the probability

f detection p of each sensor to be 0.8. Now, let us elaborate all

bjectives using this example. 

• Detection likelihood ( D ): 

Given a sensor network where each sensor has a probability p

f detecting a contamination, it is possible to calculate the detec-

ion likelihood of the whole sensor network. For each vulnerable

ode v , S v denotes which sensor locations are located downstream

f v in the directed graph. The set cardinality of S v , denoted by n v ,
s the number of sensors downstream of v . The probability of de-

ection for each vulnerable node can now be defined as one minus

he chance of not detecting the contamination with all n v sensors.

inally, D is defined as the average of the detection likelihood of

ll m vulnerable nodes: 

 = 

1 

m 

∑ 

v ∈ V ′ 
( 1 − (1 − p) n v ) (5) 

In the case of perfect sensors, i.e. p = 1 , the sum term within

 for a given vulnerable v equals 1 if there is a sensor down-

tream of v ( n v > 0 ) and 0 if n v = 0 . If in the Ex-1 network of

ig. 1 a sensor is placed on nodes j 1 and j 3 , there are two sen-

ors which can detect a contamination on node v 1 and only one

ensor which can detect an attack on node v 2 . If p = 0 . 8 , then

 = (0 . 8 + 0 . 96) / 2 = 0 . 88 . 

• Identification probability ( F ): 

Palleti et al. (2016) showed that identifying the source of an at-

ack is fairly straightforward with perfect sensors. It is only neces-

ary to make sure that the set of sensors triggered by an attack on

 vulnerable node is unique for each vulnerable node. For example,

he sensor network { j 1 , j 3 } in the Ex-1 Network leaves two unique

ets for each of the two vulnerable nodes. 

With imperfect sensors, this no longer holds. Consider again the

lacement of sensors on nodes j 1 and j 3 . When sensors are known

o be imperfect and only j 3 raises an alarm, we are not 100% cer-

ain what the source of the contamination is. It could be v 2 , but

t is also possible that v 1 is the source, if j 1 failed to detect the

ontamination. 

To deal with this uncertainty, we assume node v is contami-

ated and then consider all possibilities with respect to detection,

or each sensor node in S v . Therefore, from the set S v , every sub-

et of detecting sensors c ∈ P(S v ) is considered, where P(S v ) is the

ower set of set S v excluding the empty set. If we denote the num-

er of sensors in subset c by n c , then the probability that combi-

ation c is precisely the set of sensors alarming when node v is

ontaminated, is given by 

 (c| v , p) = p n c (1 − p) n v −n c (6) 

The only combinations c that contribute to the identification

robability, are those that do not occur as a combination of de-

ecting sensors for any other vulnerable node. For instance, again

onsidering the Ex-1 Network, assume that S v 1 = { j 1 , j 2 , j 3 } . Then

he combinations { j 1 }, { j 2 } and { j 1 , j 2 } will be able to identify with

ertainty v 1 as the source of contamination. 

For a node v and combination c , define the indicator function

(v , c) as 

(v , c) = 

{
1 , c / ∈ P(S u ) ∀ u ∈ V 

′ \ v , 
0 , otherwise. 

(7) 

Using this indicator function, it is possible to define the identi-

cation probability F of a sensor network as follows. 

 = 

1 

m 

∑ 

v ∈ V ′ 

∑ 

c∈P(S v ) 

I(v , c) p n c (1 − p) n v −n c . (8) 

• Detection time (T) : 

For the other two objectives, detection time and impact,

 method is used which is similar to the one used in

erry et al. (2008) . The intuition behind these methods is that a

ontamination will first pass the first sensor which can detect the

ontamination with the lowest detection time, and if this sensor

oes not detect it, the contamination travels further through the

etwork to the next sensor. For the detection time, define the time

t takes to detect an attack on node v with a sensor on node j as

 

t 
v , j 

. This time can be computed using the flow speeds in and the
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Fig. 2. The Ex-1 network converted to a weighted bipartite graph. 
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volume of the pipes. We can then construct an sorted list L t v in

which these detection times for each vulnerable node v are sorted

such that L t v (i ) is the i th fastest sensor to detect the contamination.

If none of the downstream sensors are able to detect the con-

tamination due to failure, which happens with probability (1 −
p) n v , a predetermined time q t v , ∞ 

is defined in which the contam-

ination is detected in another way, for example by observing an

outbreak of sickness. In previous research, 48 h is mostly consid-

ered for this time Krause et al. (2008) . The choose to scale the final

detection time to a value between 0 and 1 and not in between 0

and 48. All in all, after derivations given in Appendix, the detection

time T of the sensor network is given by: 

T = 

1 

m 

∑ 

v ∈ V ′ 

1 

q t v , ∞ 

( 

n v ∑ 

i =1 

(
p(1 − p) i −1 q t v ,L t v (i ) 

)
+ (1 − p) n v q t v , ∞ 

) 

(9)

• Contamination Impact ( Z ): 

The method for the contamination impact is very similar to the

method for the detection time, since the estimated volume of con-

taminated water consumed grows over time. The same ordering as

in list L t v can thus be used. q z v , j 
is defined as the estimated volume

of water consumed when a contamination on node v reaches the

j th sensor in L t v . q z v , ∞ 

is the estimated volume of water consumed

at maximum time q t v , ∞ 

. 

As each vulnerable node v can affect a different part of the net-

work with different impacts, the corresponding q t v , ∞ 

’s may vary.

For example, after 48 h and a demand of 1 unit per hour in the

Ex-1 Network, q z v 1 , ∞ 

= 129 and q z v 2 , ∞ 

= 46 . This should be taken

into account by weighing the different impacts of each vulnerable

node. By doing this, we place more importance on the parts of the

network in which the most water flows. Finally, Z is defined as fol-

lows, analogous to the derivation of T in Appendix. 

Z = 

∑ 

v ∈ V ′ 

1 ∑ 

u ∈ V ′ q 
z 
u, ∞ 

( 

n v ∑ 

i =1 

(
p(1 − p) i −1 q z v ,L t v (i ) 

)
+ (1 − p) n v q z v , ∞ 

) 

(10)

The formulas for the 4 separate objectives have been derived

under the assumption that the detection for every sensor node is

the same, namely p . It is easy to extend this to the case that every

sensor node has a different detection probability. For instance, if

we denote the detection probability of the i th sensor node, located

downstream of the vulnerable node v , by p i, v , then Eq. (5) be-

comes 

D = 

1 

m 

∑ 

v ∈ V ′ 

( 

1 −
n v ∏ 

i =1 

(1 − p i, v ) 

) 

. (11)

Similar expressions can be derived for the other three objectives.

However, for the remainder of the paper we assume that every

sensor has the same detection probability p . 

3.4. Greedy algorithm for optimal sensor placement 

We are dealing with a multi-objective and non-linear problem.

It is a conjecture in literature that the water quality sensor place-

ment problem is in general NP-hard ( Krause et al., 2008; Xu et al.,

2013 ). Therefore it is assumed that it is not possible to find the

optimal solution for practical problems within reasonable time,

which forces the use of heuristics. 

In our heuristic approach, the problem is reformulated into a

weighted set covering formulation. A static water distribution net-

work with vulnerable nodes can be converted to a bipartite graph

as was shown by Palleti et al. (2016) . In the bipartite graph, the

set of vulnerable nodes is on one side and all other nodes (pos-

sible sensor nodes) on the other side. Each vulnerable node v can
ffect a subset S v of the set of nodes { V �V 

′ } and these arcs are

resent in the bipartite graph. The bipartite graph representation

f the example Ex-1 Network is shown in Fig. 2 . 

In contrast to the work of Palleti et al. (2016) , values are placed

n each arc (v , j) for each objective - partial objective values. They

escribe what the placement of a sensor on node j adds to ob-

ectives D , F , (1 − T ) or (1 − Z) for a contamination on vulnerable

ode v . The contribution of the placement of a certain sensor at

ode j on the whole network can be calculated by summing all the

artial objective values of the arcs entering that node j . However,

fter one sensor location has been chosen, the objective values on

he other arcs should be updated as they are not valid anymore.

his method can therefore not be used to place multiple sensors

ithin one step. 

.4.1. Computing partial objective values 

It will now be shown how the partial objective values per arc

hould be calculated and updated for each objective. A partial ob-

ective value is denoted by �	 

(v , j) 
where (v , j) is the arc and 	 the

bjective for which the value applies. �	 

(v , j) 
is defined as the dif-

erence between the part of the objective value for that vulnera-

le node v with sensors at S v ∪ j minus the one with sensors only

t S v . 

For the detection probability D , a specific vulnerable node v and

n arc (v , j) in the bipartite graph representation, the derivation

f the partial objective value on (v , j) is shown in Eqs. (12) –(14) ,

sing the fact that n v changes to n v + 1 . 

D 
(v , j) = 

1 

m 

(
(1 − (1 − p) n v +1 ) − (1 − (1 − p) n v ) 

)
, (12)

= 

1 

m 

((1 − p) n v − (1 − p) n v +1 ) , (13)

= 

1 

m 

(p(1 − p) n v ) . (14)

The partial objective values for the time to detection and the

mpact of the contamination also depend on the place of the pos-

ible sensor j in the ordered list L t v . For this, we define k as the

umber of already placed sensors that need to change position in

he ordered list when sensor j is added. Therefore, k = 0 when the

ensor location j is the last sensor to detect and k = n v when it

s the first sensor. After some derivations, see Appendix, it can be

hown that the partial objective values for (1 − T ) and (1 − Z) are

iven by Eqs. (25) and (26) : 

T 
(v , j) (k ) = 

1 

mq t v , ∞ 

p(1 − p) n v −k 

[ 

(1 − p) k q t v , ∞ 

+ 

k ∑ 

h =1 

(
p(1 − p) h −1 q t v ,L t v (n v −k + h ) 

)
− q t v , j 

] 

, (15)
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Table 1 

The initial partial objective values for the Ex-1 network. 

�D �F �T �Z Average 

(v 1 , j 1 ) 0.4 0.4 0.375 0.590 0.441 

(v 1 , j 2 ) 0.4 0.4 0.367 0.585 0.438 

(v 1 , j 3 ) 0.4 0.0 0.333 0.549 0.428 

(v 2 , j 3 ) 0.4 0.0 0.383 0.210 0.331 
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Fig. 3. A Network with two vulnerable nodes and three demand nodes. The flow 

time of each arc is shown at each arc. 
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Z 
(v , j) (k ) = 

1 ∑ 

u ∈ V ′ q 
z 
u, ∞ 

p(1 − p) n v −k 

[ 

(1 − p) k q z v , ∞ 

+ 

k ∑ 

h =1 

(
p(1 − p) h −1 q z v ,L t v (n v −k + h ) 

)
− q z v , j 

] 

. (16) 

Using these partial objective values we do not need to calculate

very objective value from scratch after only adding one sensor.

his improves the required runtime of every algorithm that aims to

ptimize the objective function by adding one sensor at a time. If

he added sensor is only connected to some vulnerable nodes, only

he objective values on the arcs leaving those influenced vulnera-

le nodes need to be changed. For source identification, no simple

ormula of the partial objective value on an arc could be obtained.

herefore, Eq. (8) will be needed to compute this value. 

.4.2. The greedy algorithm 

A greedy algorithm will be used to place sensors in the network

ased on the weighted set covering formulation. In the greedy al-

orithm, sensors are placed one at a time such that it is possible to

pdate the partial objective values after placing a sensor. At each

teration of the algorithm, we choose to pick the best possible sen-

or location given the objective values at that time and place a new

ensor at that location. 

Given a static demand pattern for a WDN, hydraulic network

imulations can be performed to construct the directed graph and

btain values needed to compute time and impact. Using the di-

ected graph, a bipartite graph can be constructed and the ini-

ial partial objective values for each arc can be calculated, using

 v = k = 0 . The best sensor candidate j can now be chosen. This

s the sensor location j with the largest value when summing all

artial objective values �	 

(v , j) 
of the incoming arcs on that node j ,

ultiplied with the corresponding weight w 	 

of each objective 	 .

fter one sensor is placed, the objective value and all necessary

artial objective values are updated. The partial objective values

ntering node j are put to zero. Next, it is again investigated which

ensor location is the best to pick and this will continue until B

ensors have been placed. The final sensor placement X consists of

ll the chosen sensor locations. 

In the Ex-1 Network, it can be shown which sensor location

hould be chosen first using the given objective values formulas.

ll initial partial objective values and the average of the four ob-

ectives for each arc (i.e. we assume every objective has the same

eight w = 1 / 4 ) can be found in Table 1 . 

Even though location j 3 does not contribute to objective F , as

t is able to detect both possible contamination attacks, it is the

est possible sensor location in the first step. This is true as 0.428

 0.331 is larger than 0.441 or 0.438. After a sensor is placed on

ocation j 3 , the partial objective values for arcs (v 1 , j 1 ) and (v 1 , j 2 )
eed to be recalculated. 

.5. Local search 

Greedy algorithms are in general very fast and may result in

ood solutions. However, the optimal solution is not always found.
hen a sensor location is chosen as the B th sensor in the previ-

us step, all updated sensor placements with | X | > B contain that

ensor location. 

A small example network in which this is a problem is shown

n Fig. 3 . 

The demand is again one unit per hour, p is again 0.8 and the

ow times are shown in the figure. In the first step of the greedy

lgorithm, sensor location j 3 will be chosen as it can detect both

ossible contaminations. The greedy solution of two sensors must

ontain location j 3 whereas the optimal sensor placement of two

ensors consists of j 1 and j 2 . 

A simple way to try and improve the greedy solutions is to use

 local search algorithm in order to improve the solution found

y the greedy algorithm. This local search method is defined as

ollows. Consider a sensor placement X . In the local search step,

ach neighboring solution is investigated to check whether it has

 better objective value than the current sensor placement. If so,

he best-found neighboring solution will be the new placement

 and we perform another local search step until a local op-

imum is found. Neighboring solutions are defined by replacing

ne sensor node in X with one of the set {{ V �V 

′ } �X }. Note that

erry et al. (2009) also suggested a local search method. However,

is local search start from the optimal placement found under the

ssumption of perfect sensors while our starting position comes

rom running the Greedy algorithm first, already taking sensor im-

erfection into account. 

.6. Theoretical upper bound for the objective 

To quantify the performance of the heuristics, it is useful

o compare the found objective values, with a theoretical upper

ound. It is easy to see that the following bounds hold: D ≤ 1, T ≥ 0

nd Z ≥ 0. In fact, if we assume that p is sufficiently close to 1, or

f the number of sensors is sufficiently large (i.e. all n ′ v s are suf-

ciently large), then the values of D , T and Z , will be very close

o their bounds, i.e. 1, 0 and 0, respectively. The situation for the

dentification probability F is different. Recall that V 

′ denotes the

et of vulnerable nodes, with | V ′ | = m . Next, define the subset W

f V 

′ , consisting of vulnerable nodes, that are not downstream of

ny other vulnerable nodes in V 

′ . Then, only the vulnerable nodes

n W can be identified as the source of contamination, with cer-

ainty. Therefore, F , will have an upper bound 

| W | 
m 

. Denoting the

bjective by O , and assuming all weights in Eq. (4) are equal, we

btain the following upper bound for the objective. 

 ≤ 3 m + | W | 
4 m 

. (17) 

We will use Equation (17) to assess the performance of our

euristics for a specific use case, in the next section. 

. Case study 

We will use an EPANET benchmark instance of a WDN, corre-

ponding to a reduced representation of the WDN of Bangalore,

o demonstrate the methodology introduced in the previous sec-

ion. In Section 4.1 , the Bangalore Network is introduced. This is a

edium-sized network with a relatively high number of vulnerable
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Fig. 4. The Bangalore Network with V ′ in red and the sensor placement in green. (a), (b), (c), (d) represent sensor locations for X P , X G 1 , X G 2 and X G 3 respectively. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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nodes. More information on the Bangalore Network can be found

in Datta (1992) . 

4.1. Bangalore network 

The Bangalore Network, as seen in Fig. 4 , is a reduced repre-

sentation of the water distribution network of Bangalore, a city in

India. The network has three sources, which are represented in the

network by the reservoir nodes 1, 2 and 3. A clarification of all

symbols used in the representation of the WDN can be found in

Palleti et al. (2016) . This network contains 150 nodes in total, 116

normal pipes, 32 valves and six pumps. Pumps and valves are rep-

resented in the networks with an edge between two nodes with

the specific symbol on the edge. For this reason, when pumps or

valves are considered as a vulnerable node, the node before the

pump or valve is labeled as vulnerable. For example, consider the

pump between node 66 and 67 on the far left of the network. As

water flows from node 66 to node 67, node 66 is considered as a

vulnerable node and nodes 67, 68, 69 and 70 will be affected by

an attack on this node. Even though the network contains several

different demand conditions, the consequences for the flow direc-

tions are minimal. 

This network was also used by Palleti et al. (2016) in their re-

search focusing on detection and identification with perfect sen-

sors. The main advantage of this network is the large number of

reservoirs from which water flows and possible vulnerable nodes,

such that the sets of nodes affected by an attack can be very dif-

ferent. Palleti et al. (2016) used nine vulnerable nodes in their re-

search: the three reservoirs and the 6 pumps. The large number

of 32 valves were omitted for simplicity of presenting the results

as their target was 100% detection and identification, which would

otherwise require around 30 sensors. In our research, both 9 and
1 vulnerable nodes will be used. The case with 9 vulnerable nodes

ill be referred to as the standard Bangalore Network. The case

ith 41 vulnerable nodes will mainly be used to see how well our

ethods and objectives can handle larger numbers of vulnerable

odes. 

.2. Perfect-Sensor placement vs imperfect-sensor placement 

In Section 4.2.1 , a perfect-sensor network for the Bangalore Net-

ork will be presented. After that, in Section 4.2.2 , we will show

ow the best-found sensor placement may change, as the proba-

ility of detection p is lowered. In these sections, equal weights

or each objective will be considered. 

.2.1. Perfect-sensor placement 

In our research, the same static loading condition and flow pat-

erns are used as in Palleti et al. (2016) . The nodes before the

umps and the three reservoirs were considered to be vulnerable

odes. The resulting nine vulnerable nodes were nodes 1, 2, 3, 19,

2, 37, 39, 53 and 66. As a consequence, there are 141 nodes left

here sensors could be placed. 

They found out that six sensors are necessary in the Bangalore

etwork to detect and identify all possible attacks on the nine vul-

erable nodes. The sensor network they present is the sensor set

20, 33, 40, 54, 67, 71}, which indeed gives value 1 to objectives D

nd F . However, using the presented greedy algorithm with p = 1

nd adding objectives T and Z , a slightly different sensor placement

s found. The sensor on location 71 is moved to location 74 as this

ocation is reached somewhat earlier in the network. The small dif-

erences for the objectives can be seen in Table 2 . 

The sensor placement {20, 33, 40, 54, 67, 74} will be used in the

ext sections as the perfect-sensor placement for comparison and
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Table 2 

Comparison of the solution found by Palleti et al. (2016) and the solution found by our greedy 

algorithm. 

Sensor placement D F T Z Average 

Palleti et al. (2016) : {20, 33, 40, 54, 67, 71} 1.0 0 0 1.0 0 0 0.970 0.981 0.988 

Greedy algorithm: {20, 33, 40, 54, 67, 74} 1.0 0 0 1.0 0 0 0.980 0.995 0.994 

Fig. 5. Comparison of objective values with different detection probabilities. 

Table 3 

Different sensor placements and the range of p for which that sensor placement 

is optimal according to the greedy algorithm. 

Sensor placement Range of p for which the placement is optimal 

X P : {20, 33, 40, 54, 67, 74} p = 1.0 0 0 to 0.981 

X G 1 : {20, 40, 54, 58, 67, 74} p = 0.980 to 0.955 

X G 2 : {20, 40, 54, 67, 68, 74} p = 0.954 to 0.932 

X G 3 : {40, 41, 54, 67, 68, 74} p = 0.931 to 0.900 
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o see how this placement changes when p decreases. This place-

ent will be referred to as X P . In Fig. 4 , the Bangalore Network is

epresented in which you could see the nine vulnerable nodes in

ed and the six sensor locations from X P in green. The flow direc-

ions are also represented in this network by arrows, such that the

aths from the vulnerable nodes to the sensors are visible. 

.2.2. Imperfect-sensor placement 

We will now gradually decrease the detection probability p , us-

ng a step size of 0.001, starting at p = 1 , until we reach p = 0 . 9 .

or each value of p , the greedy algorithm is executed to find the

ptimal sensor placement. This leads to sensor placements which

re optimal for a certain range of p , see Table 3 . 

The perfect-sensor placement is only the best-found sensor

lacement for detection probabilities larger than 0.98. At that

oint, changing one sensor location results in a better overall ob-

ective value. Table 4 shows how the optimal objective values

hange, as a function of decreasing values of p . The optimal ob-

ective values for a given p are shown bold-faced. Fig. 5 shows the

omparison of objective values of different sensor placement and

etection probabilities. 

When p decreases, it can be seen that the objective values for

ensor placement X G 3 decrease slower than the ones for X P . The

eason behind this can clearly be seen when considering the sen-

or network X G 3 (see Fig. 4 ). At some places in the network, two

ensors are placed next to each other to compensate the imperfec-
ion of the other sensor. This occurs with location pairs 40 & 41

nd 67 & 68 in X G 3 . We have shown that for the Bangalore Net-

ork the transition value for the detection probability is p = 0 . 98 ,

ssuming nine nodes are vulnerable and six sensors are placed in

he network. In addition we have also run experiments to study

o what extent this transition probability depends on the number

f placed sensors, the number of vulnerable nodes and the net-

ork topology. The results are reported in de Winter (2018) . For

xample, we found that for the Bangalore Network with 41 vul-

erable nodes, even for p = 0 . 999 with nine sensors deployed in

he network, the sensor placement differs from the perfect-sensor

lacement at three places. 

From the results reported in this subsection, we can clearly see

he added value of our proposed algorithm, as the assumption that

he sensors are perfect in general do not lead to optimal sensor

lacements. 

.3. Impact of uncertainty in the demand 

In the previous subsection we have evaluated our model under

tatic load conditions. In this subsection we will quantify the im-

act of uncertainty of demand on the imperfect sensor placement. 

The starting point of the analysis is the same as before,

.e. the Bangalore network with static loading conditions, as in

alleti et al. (2016) . We model uncertainty in demand by vary-

ng the original demand W i at demand node i , by a factor P .

e assume the demand is uniformly distributed on the interval

(1 − P ) W i , (1 + P ) W i ] . For the uncertainty in demand, we have

onsidered the following values for P : {5%, 10%, 15%, 20%, 25%}.

he cases with uncertainty in demand are bench marked against

he case with static loading. We denote the sensor placement ob-

ained for this benchmark case by X orig . So for instance, for the case

p = 0 . 9 , according to Table 3 , X orig = { 40 , 41 , 54 , 67 , 68 , 74 } . 
For a given value of P , we change the demand of every node,

y multiplying it with a random number between 1 − P and 1 + P .
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Table 4 

Objective values for the four sensor placement for different values of p . 

Sensor placement p = 1 0.99 0.98 0.96 0.94 0.92 0.90 

X P 0.9937 0.8239 0.8207 0.8141 0.8073 0.8003 0.7930 

X G 1 0.9932 0.8236 0.8207 0.8148 0.8086 0.8022 0.7956 

X G 2 0.9353 0.8218 0.8195 0.8145 0.8093 0.8039 0.7981 

X G 3 0.8755 0.8182 0.8165 0.8127 0.8088 0.8046 0.8001 

Table 5 

Fraction of experiments where uncertainty in demand 

gives same result as static loading. 

p P = 5% 10% 15% 20% 25% 

0.9 1 0.940 0.878 0.754 0.682 

0.95 1 0.915 0.726 0.679 0.574 

Table 6 

Ratio of objective values for X orig and newly found optimal place- 

ment. 

p P = 5% 10% 15% 20% 25% 

0.9 1 0.99855 0.99724 0.99561 0.99455 

0.95 1 0.99903 0.99753 0.99454 0.99236 

Table 7 

Maximun number of different nodes in X orig and 

newly found optimal placement. 

p P = 5% 10% 15% 20% 25% 

0.9 0 1 1 1 2 

0.95 0 1 1 2 2 
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For the obtained WDN we again run EPANET, and subsequently our

algorithm, to determine the best sensor placement. As a measure

of performance we look at the number of nodes in the new sen-

sor placement, that where not in X orig . We also look at the ratio

between the overall objective of X orig and that for the new found

placement. 

This experiment has been repeated 500 times. For the imper-

fection of the sensors, two values were considered, namely p = 0 . 9

and p = 0 . 95 . The results of the experiment are report in Tables 5 ,

6 and 7 . 

We conclude from Table 5 that inclusion of demand uncertainty

has an impact on sensor placement. Still, even for uncertainty up

to 25%, for more than 50% of the time, the sensor placement found

through the static demand assumption is the optimal one. 

Table 6 shows that even though X orig no longer is the optimal

sensor placement, the difference in objective values with the opti-

mal placements are relatively small. 

Finally, Table 7 shows that for the considered scenarios, the

maximum number of new nodes in the optimal sensor placements,

is at most two. 
Table 8 

Comparison of the two heuristics on the Bangalore N

Bangalore 5–9 sensors, 10 different p ’s 

m = 9 Avg. obj. #best-found a Avg. ti

Greedy 0.81509 46 0.251 s

Greedy + LS 0.81511 50 3.226 s

a Number of solutions found with the heuristic, wh

tic. 
.4. Performance of the greedy algorithm 

In this section, the performance of our greedy algorithm will

e compared with its variant which in addition implements a lo-

al search, introduced in Section 3.5 . The comparison will be done

sing the Bangalore Network with nine vulnerable nodes. A total

f 100 different scenarios are considered, varying the number of

laced sensors B (between 5 and 14) and the detection probability

 (between 0.9 and 0.99, in steps of 0.01). Again, it is assumed that

he weights for each objective is equal. Table 8 reports the average

bjective value, the average run time and the number of times the

olution of the algorithm was equal to the best-found solution by

ll heuristics. All algorithms were implemented in Python 2.7 and

ere run on a computer with an Intel Core i5-5300U processor

ith 2.30 GHz CPU and 8 GB of RAM. 

The results for the cases corresponding to the placement of 5–9

ensors and that of 10–14 sensors, are split in the table. 

By definition, the Greedy + LS heuristic performs at least as

ood as the greedy algorithm. We see that in 59 out of the 100

ases the basic greedy algorithm finds solutions which are equally

ood as solutions found by Greedy + LS. The more sensors need

o be placed, the less likely it is that Greedy is able to find the

est-known solution. However, the differences are very small. For

he 50 cases with 10–14 sensors, the difference between the aver-

ge objective value of Greedy and Greedy + LS is 0.0 0 034 while

he maximum deviation in one case from the best-known objec-

ive value is 0.00144. This largest deviation occurs with the case

p = 0 . 96 and B = 12 for which the best-found objective value was

.83038. This means that the score of the solution of Greedy is

9.83% if the best-found solution is considered to be 100%. 

While this is only a fairly small difference, the greedy algorithm

learly outperforms the other heuristic with respect to run times.

he run time of Greedy is on average 1 s over all 100 cases in this

mall network with a maximum run time of 4 s. The run times of

reedy + LS increases much faster. The average run time for this

euristic for the 50 largest cases is over a minute. 

Finally we also look at the performance of the heuristics, by

omparing the outcomes with a brute force method that finds the

ptimal solution and a theoretical upper bound. For the former, we

ooked at a reduced Bangalore Network, where only 36 out of the

riginal possible sensor locations are considered. Then, for the sce-

ario of 6 placed sensors and detection probability p = 0 . 95 , we

nd that both Greedy and Greedy + LS give the same objective

alue 0.81195 as the brute force method. The run time for this case

as 0.061 s for Greedy, while the brute force method took 704 s.

 second way to quantify the performance of the heuristics is to

ompare them with the theoretical upper bound in Eq. (17) . It is
etwork with nine vulnerable nodes. 

10–14 sensors, 10 different p ’s 

me Avg. obj. #best-found Avg. time 

 0.82853 13 1.905 s 

 0.82887 50 64.970 s 

ich are not outperformed by the other heuris- 



C.d. Winter, V.R. Palleti and D. Worm et al. / Computers and Chemical Engineering 121 (2019) 200–211 209 

Table 9 

Comparison of greedy with theoretical upper bound; 15 sensors are placed and p = 0 . 95 . 

Instance Greedy: 15 sensors, p = 0 . 95 Upper-bound Optimality gap 

Bangalore, m = 9 0.83110 0.83333 0.27% 

Bangalore, m = 41 0.74586 0.76829 2.982% 
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asy to verify that for the Bangalore network with m = 9 , three

ulnerable nodes are not downstream of other vulnerable nodes.

herefore | W | = 3 . As a result, according to Eq. (17) , the objective

alue is upper bounded by 0.833. Also for the Bangalore network

ith 41 vulnerable nodes we find | W | = 3 , leading to the upper

ound 0.76829. In Table 9 , these upper bounds are compared to

he solution value found with the greedy algorithm for 15 sensors

nd p = 0 . 95 . Using these results, the optimality gap, defined as

he relative distance between the found objective value and the

pper bound, can be calculated. 

We conclude from Table 9 that the sensor placements found

hrough Greedy are close to the optimal placement. 

. Conclusions and future work 

Worldwide, there is an upcoming threat of water pollution and

errorist attacks on water distribution networks. Accidental or de-

iberate incidents will affect the quality of the drinking water and

an cause many fatalities and a huge economic impact. To prevent

hese consequences, WDNs should use a sensor network to mon-

tor the quality of the drinking water. The main problem we con-

ider is how to place sensors in a WDN in an optimal way. 

In previous sensor placement studies, it was mostly assumed

hat sensors are perfect. However, sensors can fail to detect a con-

amination due to errors, failures, maintenance difficulties, degra-

ation, drifting or hacking. In this paper it was found that large dif-

erences in the optimal sensor locations may occur when consid-

ring slightly imperfect sensors compared to perfect sensors. We

ave shown that the imperfectness of contamination sensors influ-

nces the optimal placement of these sensors within the network.

n particular, we conclude that it is essential to take the imperfect-

ess of the sensors into account when designing a sensor place-

ent. 

In order to design a sensor placement, the problem has been

onverted to a changing weighted set covering formulation with

 bipartite graph. A greedy algorithm and a variant deploying lo-

al search have been introduced to solve this problem. They can

e used to obtain a close to optimal sensor placement, taking into

ccount the failure probability of the sensors as well as four differ-

nt objectives: minimizing the time to detection and the impact of

 contamination and maximizing the probability of detection and

he probability of identifying the source of the attack. The algo-

ithms have been tested using the Bangalore network. 

The greedy method is very fast, and close to optimal in small

etworks. Local search improvements only result in minor im-

rovements to the sensor placement, while increasing the compu-

ation time drastically. 

The developed method can be easily extended to take dynamic

emand patterns into account, i.e. demand patterns that vary over

ime. For each demand pattern a corresponding flow pattern over

he WDN can be derived. The contribution of this flow pattern to

he objective values for a given sensor placement can be computed.

roper weighing of these contributions for different demand pat-

erns allows to compute the objective values for a dynamic de-

and pattern over a day, which can be used as input to derive

ood sensor placements. In addition, while the formulas described

n this paper assume equal failure probability p over all sensors,

hey can easily be adapted to take different failure probabilities

nto account. 
In order to apply the introduced methods in practice, it is im-

ortant to be able to estimate the failure probability p of a sensor,

ince p has a large influence on the best sensor placement. KPIs

iven by the producer of the sensor may help to estimate p ; how-

ver, independent measurements will also be needed to fine tune

uch estimations - especially to see how the failure probability de-

ends on the age of the sensor. 
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ppendix 

Derivation of Objective Values for T and Z . In Section 3.3 it was

hown that the objective value T can be formulated as can be seen

n Eq. (9) , which is shown again below: 

 = 

1 

m 

∑ 

v ∈ V ′ 

1 

q t v , ∞ 

( 

n v ∑ 

i =1 

(
p(1 − p) i −1 q t v ,L t v (i ) 

)
+ (1 − p) n v q t v , ∞ 

) 

((9) revisited) 

This will now be clarified using the previously defined defini-

ions of p , q t v , j 
and L t v . First, consider only one vulnerable node

 . Given a chance p that a sensor detects a contamination, the

rst sensor L t v (1) contributes pq t v ,L t v (1) 
to the average detection time

f vulnerable node v , the second sensor p(1 − p) q t v ,L t v (2) 
, etcetera.

ith probability (1 − p) n v , no sensor will give an alarm which re-

ults in a detection time defined as q t v , ∞ 

. In total, summing all

hese terms this results in the part between brackets in Eq. (9) .

o make sure the objective value is between 0 and 1, we have to

ivide this value by the maximum detection time q t v , ∞ 

. When no

ensors are placed after vulnerable node v , T for that v should give

 instead of q t v , ∞ 

. The normalized detection time of the whole sen-

or network is then the average over all m vulnerable nodes in V 

′ .
he derivation of Z is similar. 

Derivation of Partial Objective Values for T and Z . The derivation

f the partial objective values for T and Z also need some further

larification. In Section 3.4.1 , it was only stated that the objective

alue for an arc also depends on the position of the new sensor j

n the ordered list L t v . The order in L t v determines how much each

ensor contributes to the objective function as the first sensor is

he first to raise an alarm with probability p . When the detection

ime of the added sensor is less than L t v (1) , this sensor will be

he first sensor, along with its contribution p , and all other sen-

ors contribute less to the objective than before. When the added

ensor is placed at the end of the network, only the contribution

f the non-detection time of q t v , ∞ 

will be less than before and the

ensor itself will also contribute a smaller fraction to the total ob-

ective. 

Define the normalized detection of one vulnerable node as T v : 

 v = 

1 

q t v , ∞ 

( 

n v ∑ 

i =1 

p(1 − p) i −1 q t v ,L t v (i ) + (1 − p) n v q t v , ∞ 

) 

(18) 

https://doi.org/10.13039/501100001381


210 C.d. Winter, V.R. Palleti and D. Worm et al. / Computers and Chemical Engineering 121 (2019) 200–211 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

�

 

R

B  

 

B  

 

B  

 

C  

 

D  

D  

 

G  

H  

 

 

 

I  

 

K  

K  

 

K  

 

 

L  

 

 

 

L  

L  

 

 

M  

 

 

O  

 

O  

 

 

P  

 

 

P  

 

 

R  

 

First, we will look at the easiest example, a sensor on node

j placed further away than the already placed n v sensors such

that q t v ,L t v (n v ) 
< q t v , j 

< q t v , ∞ 

. Only the last term of T v (which is (1 −
p) n v q t v , ∞ 

) will be split and changes. The sensor with location j

will be the sensor to detect the contamination when all n v sen-

sors fail and this added sensor works. This happens with proba-

bility p(1 − p) n v . With probability (1 − p)(1 − p) n v , there is a non-

detection. The new formula for T v , denoted as T ∗v , can be seen in

Eq. (19) . 

T ∗v = 

1 

q t v , ∞ 

( 

n v ∑ 

i =1 

p(1 − p) i −1 q t v ,L t v (i ) + p(1 − p) n v q t v , j 

+(1 − p)(1 − p) n v q t v , ∞ 

) 

(19)

It should also be noted that the contribution of vulnerable node

v to the total objective T is T v divided by m and that our objective

is to maximize (1 − T ) . The difference between 

T ∗v 
m 

and 

T v 
m 

is equal

to the decrease of objective T via vulnerable node v if sensor j is

added to the end of the ordered list. So, T v 
m 

− T ∗v 
m 

is equal to the

objective value of arc (v , j) as we consider (1 − T ) as an objec-

tive. This objective value is denoted by �T 
(v , j) 

(k ) in which k is used

to show the position of the possible new sensor j in the ordered

list. The variable k represents the number of already placed sensors

which need to change a position in the ordered list when sensor

j is added. In this example, k is equal to zero as the added sensor

is added to the end. �T 
(v , j) 

(0) is calculated in Eqs. (20) , (21) and

(22) . 

�T 
(v , j) (k = 0) = 

T v 

m 

− T ∗v 
m 

= 

1 

mq t v , ∞ 

(
(1 − p) n v q t v , ∞ 

− (p(1 − p) n v q t v , j 

+(1 − p)(1 − p) n v q t v , ∞ 

) 
)

(20)

= 

1 

mq t v , ∞ 

(
p(1 − p) n v q t v , ∞ 

− p(1 − p) n v q t v , j 

)
(21)

= 

1 

mq t v , ∞ 

p(1 − p) n v (q t v , ∞ 

− q t v , j ) (22)

In the same way, �T 
(v , j) 

(1) and �T 
(v , j) 

(2) can be calculated. 

�T 
(v , j) (1) = 

1 

mq t v , ∞ 

p(1 − p) n v −1 ((1 − p) q t v , ∞ 

+ pq v ,L t v (n v ) − q t v , j ) 

(23)

�T 
(v , j) (2) = 

1 

mq t v , ∞ 

p(1 − p) n v −2 
(
(1 − p) 2 q t v , ∞ 

+ p(1 − p) q t v ,L t v (n v ) 

+ pq t v ,L t v (n v −1) − q t v , j 

)
(24)

A pattern becomes visible in these formulas. For larger values

of k , more original sensor contributions change and more terms

need to be added. When k = n v , all sensor contributions change.

In general, we can define the partial objective value for arc (v , j)
and position variable k as follows. 

�T 
(v , j) (k ) = 

1 

mq t v , ∞ 

p(1 − p) n v −k 

[ 

(1 − p) k q t v , ∞ 

+ 

k ∑ 

h =1 

(
p(1 − p) h −1 q t v ,L t v (n v −k + h ) 

)
− q t v , j 

] 

(25)

In the same way, the partial objective value of objective (1 − Z)

can be derived. The main difference is that we should account for

the weighing of the impact of an attack on each vulnerable node.
he formula for �Z 
(v , j) 

(k ) can be seen in Eq. (26) . 

Z 
(v , j) (k ) = 

1 ∑ 

u ∈ V ′ q 
z 
u, ∞ 

p(1 − p) n v −k 

[ 

(1 − p) k q z v , ∞ 

+ 

k ∑ 

h =1 

(
p(1 − p) h −1 q z v ,L t v (n v −k + h ) 

)
− q z v , j 

] 

(26)
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