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Abstract—Demand-side energy management improves robust-
ness and efficiency in Smart Grids. Load-adjustment and load-
shifting are performed to match demand to available supply.
These operations come at a discomfort cost for consumers as
their lifestyle is influenced when they adjust or shift in time
their demand. Performance of demand-side energy management
mainly concerns how robustness is maximized or discomfort
is minimized. However, measuring and controlling the distri-
bution of discomfort as perceived between different consumers
provides an enriched notion of fairness in demand-side energy
management that is missing in current approaches. This paper
defines unfairness in demand-side energy management and shows
how unfairness is measurable and controllable by software
agents that plan energy demand in a decentralized fashion.
Experimental evaluation using real demand and survey data from
two operational Smart Grid projects confirms these findings.

Index Terms—unfairness, fairness, agent, planning, demand,
Smart Grid, load-adjustment, load-shifting.

I. INTRODUCTION

Demand-side energy management can make Smart Grids

more robust and efficient as demand-response mechanisms

are capable of preventing black-outs, increasing utilization

of renewable energy resources, reducing carbon emissions

or decreasing the electricity prices for consumers. Demand-

response mechanisms are mainly designed to maximize the

load-adjustment or load-shifting potential. However, these

mechanisms do not usually take into consideration the impact

that demand-side energy management has on the lifestyle

of consumers. Load-adjustment and load-shifting are likely

to cause discomfort, which might be not equally distributed

between consumers. This effect makes most demand-side

energy management approaches unfair, and such unfairness

may result in a lower adoption level of demand-response

programs or even in malfunctioning of electricity markets [1]

and monetary compensations [2].

This paper studies unfairness in decentralized planning of

energy demand. Unfairness is defined by the dispersion of

discomfort that consumers experience when future demand

is planned in response to a load-adjustment or load-shifting

event. Different consumers perceive discomfort in a different

way. For example, a room with low temperature does not

make all consumers feel the same cold. This paper shows

how reasoning about the discomfort perception of consumers

is possible by analyzing the answers that consumers provided

in surveys of demand-response programs. This contribution

provides a more realistic view of unfairness that is closer to

Smart Grid practice.

This paper also shows that unfairness is temporally influ-

enced and correlated to the demand level, which varies season-

ally. For example, in geographic areas that have cold winters

with higher demand than summers, unfairness is higher. This

paper also shows how unfairness is locally controllable by

tuning the process of demand planning. If the number of al-

ternative demand plans is lower in load-adjustment, unfairness

is also lower. This paper experimentally studies the aforemen-

tioned aspects using real demand data from two operational

Smart Grid projects. Given that fairness (or unfairness) is

a relatively unexplored research area in demand-side energy

management, this paper shows that unfairness is measurable

and controllable in Smart Grids, concluding that a notion of

fairness can provide a more in-depth understanding about the

performance trade-offs in demand-side energy management.

This paper is outlined as follows: Section II introduces the

context of demand planning in which unfairness is studied.

Section III motivates and defines a notion of unfairness in

demand planning. Section IV illustrates two operational Smart

grid projects from which data are used for the experimental

evaluation that follows in Section V. Section VI illustrates and

compares the notion of unfairness introduced in this paper with
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related work. Finally, Section VII concludes this paper.

II. DEMAND PLANNING

Demand planning is defined in this paper as the computation

of a time series, the demand plan, with the scheduled energy

consumption of a future time period. This paper studies

demand planning at the household level, yet, this approach

can be extended to the level of a household appliance, wall

outlet or even the feeder of a neighborhood. Demand planning

can be used as a computational mechanism of demand-side

energy management services under various demand-response

programs [3]. This paper focuses on two such services that

can be used to improve the robustness and efficiency of Smart

Grids: (i) load-adjustment and (ii) load-shifting.

Load-adjustment in demand planning is defined as an over-

all increase or decrease of demand compared to an intended

demand without planning. A decrease in demand is required,

for example, if the overall capacity of supply is not adequate

to meet demand. An increase in demand is desired when there

is a high availability of renewable energy resources [4] or

when market prices are low [5]. In practice, load-adjustment

is achieved by incentive mechanisms [6] that motivate chang-

ing the comfort level of heating/cooling or switching on/off

household appliances.

Load-shifting in demand planning is defined as a change

in demand distribution compared to the one of an intended

demand without planning, yet the overall average planned

demand equals the intended one. Load-shifting often results in

peak-shaving, minimization of power oscillations or shifting of

load to low-peak hours. In practice, load-shifting is achieved

by pre-heating/cooling water heaters before peak-hours or

incentivizing consumers to change their consumption behavior,

e.g. making a shower earlier or later in time.

This paper focuses on the planning model of possible
demand plans [7] that are locally generated by software

agents (or other software components) that control a household

energy management system [8]. The possible plans represent

alternative demand plans from which an agent can choose,

according to local criteria and system objectives.

Plan selections can be local or coordinated. This paper

focuses on load-adjustment objectives under local selections:

demand is minimized by letting agents choose demand plans

with the lowest average energy consumption. This can be

achieved with a fitness function that locally minimizes energy

demand. Thus, coordination between different agents is not

required. In contrast, load-shifting objectives require coordi-

nated selections that result in desynchronizing the times during

which consumers consume energy. Such a coordination is per-

formed by EPOS, the Energy Plan Overlay Self-stabilization
system [9].

This paper adopts a data-driven approach for plan genera-

tion. Possible demand plans are locally generated by clustering

historical demand data every certain time period, e.g., every

day, for a total period of time, e.g., a week or a month. Clus-

tering is based on the computation of a proximity metric such

as the Euclidean or the Manhattan distance [10]. The number

of clusters is usually part of the clustering parameterization

and represents the number of possible plans that the agents

generate. The total period of time from which historic data is

used as input of the clustering algorithm can be defined by a

sliding clustering window. For example, the CAISO demand

forecasting methodology predicts demand based on the energy

consumption of the past 10 days [11]. The same principle can

be adopted for the generation of the possible plans for the

following day.

Each possible plan is devised by computing the represen-

tative demand time series of each cluster. More specifically,

each possible plan is the medoid of a cluster and is computed

by the median of the historical time series that belongs to this

cluster. A critical aspect in the clustering process is the number

of clusters l that corresponds to the number of possible plans.

Previous experimental work shows that a higher number of

possible plans in demand-side energy management results in

improved robustness for Smart Grids [9], [7]. A higher number

of possible plans means that the agents have a higher degree

of freedom to adjust demand according to system objectives.

However, a higher number of possible plans increases also the

computational cost1 and causes a lower cluster size on average.

A cluster with a lower size results in a devised possible plan

that is less representative of past energy consumption.

III. UNFAIRNESS UNDER DEMAND PLANNING

Planning of demand for load-adjustment and load-shifting

results in a discomfort impact for consumers. Changes are

required that affect how and when consumers use energy.

For example, load-adjustment may entail that heating tem-

perature setpoints are lower during winter times resulting in

a discomfort experience: consumers feel colder. The same

holds for load-shifting as consumers need to change the

times when they perform certain activities, e.g. running the

washing machine. Moreover, a discomfort experience depends

on human perception and therefore the discomfort impact

of load-adjustment and load-shifting is not the same among

different consumers.

Most demand-side energy management methods do not con-

sider how this discomfort is distributed among consumers. The

distribution of discomfort indicates a degree of fairness in the

sense of how ‘equally’ consumers contribute to the robustness

of Smart Grids. This paper introduces a method that quantifies

and controls unfairness of discomfort under load-adjustment

and load-shifting, even when consumers perceive discomfort

differently. Two types of discomfort are distinguished: (i)

adjustment discomfort and (ii) shifting discomfort.

Adjustment discomfort is assumed to be the discomfort ex-

perienced under load-adjustment and it is defined by summing

positive and negative errors that correspond to the distance

of the planed demand from the actual demand. Adjustment

discomfort is computed as follows:

1The increased computational cost concerns the generation process but also
the optimization performed by EPOS [9].
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Ai = wa
i

T∑
t=1

(pti − dti), (1)

where pti is the demand at time t of the selected plan with

size T generated and selected by agent i. The demand dti is

the respective intended energy consumption without demand

planning. Negative errors are perceived as negative discomfort,

or comfort, given that consumers use a higher amount of

energy resources. The weight wa
i ∈ [0, 1] represents the

sensitivity of a consumer i to the adjustment discomfort. A

value equals to 0 means that the consumer does not perceive

any adjustment discomfort due to demand reduction, while a

value equal to 1 means that the sensitivity of the consumer to

demand reduction is maximal.

Shifting discomfort is assumed as the discomfort experi-

enced under load-shifting and it is defined by the root mean

square deviation as follows:

Si = ws
i

√√√√ 1

T

T∑
t=1

(pti − dti)
2, (2)

where pti and dti are the same demand values defined for

Ai. In contrast to adjustment discomfort, shifting discomfort

measures squared errors that are always positive and capture

temporal changes in demand. As before, the weight ws
i ∈ [0, 1]

represents the sensitivity of consumer i to any shifting of the

desired demand dti: the higher the value of ws
i, the higher the

perceived discomfort.

The discomfort values between n different consumers can-

not be compared as they correspond to different demand levels.

For this reason, normalized discomfort values in the range

[0, 1] are computed as follows:

A′
i =

Ai −minni (Ai)

maxni (Ai)−minni (Ai)
, (3)

S′
i =

Si −minni (Si)

maxni (Si)−minni (Si)
(4)

Finally, the unfairness values UA and US are quantified by

computing the standard deviation of the normalized adjustment

and shifting discomfort values:

UA =

√√√√ 1

n

n∑
i=1

(A′
i −A′

i), (5)

US =

√√√√ 1

n

n∑
i=1

(S′
i − S′

i), (6)

where A′
i and S′

i are the mean of all adjustment and shifting

discomfort values.

Although the notion of fairness is relevant to other aspects

of demand-side energy management, e.g., monetary compen-

sation, this paper focuses on the novel aspect of discomfort

that is challenging to quantify. Moreover, if discomfort is

fairly distributed among consumers, this prevents situations in

which consumers may aim for themselves the full monetary

benefit [2].

IV. VALIDATION IN SMART GRID PROJECTS

The actual unfairness that consumers experience via demand

planning is validated a posteriori using real consumption data

from two operational Smart Grid projects, the Electricity Cus-
tomer Behavior Trial2 in Ireland and the Olympic Peninsula
Smart Grid Demonstration3 in the USA. The intended energy

demand dti used to compute the discomfort values is referred

to in this paper as CONTROL-DATA.

A. The Electricity Customer Behavior Trial project

This project is a cost-benefit analysis that assesses the

impact of different time-of-use tariffs on the electricity con-

sumption of Irish households and enterprises. The project ran

in the period 2009-2010 with 5000 residential and business

consumers participating. The data are cleaned from missing

values and filtered out to contain the energy consumption time

series of 782 residential consumers that belong to the control

group4.

The software agent that controls the energy management

system reasons about the number of possible plans based on

the answers provided by the human consumer to the following

two survey questions5:

Question 1. My household may decide to make minor changes
to the way we use electricity.

Question 2. My household may decide to make major changes
to the way we use electricity.

The answer aq in each of the above question q belongs to

{1, ..., 5}, where 1 stands for a strong agreement and 5 stands

for a strong disagreement. Algorithm 1 illustrates how agents

reason about the number of possible plans they generate6. Note

that the number of plans computed by this algorithm is referred

to in this paper as l = f1(z = x). The main intuition behind

the generation algorithm is the normalization of the answers

to the two questions a1, a2 in l ∈ {z − 2, ..., z + 3}. The

number of possible plans increases as consumers allow for

more major changes in the way they use electricity (lines 1-6

in Algorithm 1). The constant z is used as a scaling factor for

the number of possible plans in the generation process.

2http://www.ucd.ie/issda/data/commissionforenergyregulationcer/ (last ac-
cessed January 2014)

3https://svn.pnl.gov/olypen/ (last accessed January 2014)
4These consumers are not affected by the time-of-use tariffs applied for the

purpose of the project.
5The question block ‘55122’ of the pre-trial residential survey contains

these two questions.
6Note that from the total number of 782 residential consumers, 132 of

these do not participate in the pre-trial survey. For 116 of these consumers,
the question block ‘54132’ of the post-trial survey is used for computing
Algorithm 1. This question block is the respective post-trial question block
‘55122’ of the pre-trial survey (My household made minor/major changes to
the way we use electricity.). For the final 16 residential consumers that do
not participate in neither of the pre-trial nor post-trial surveys, the number of
possible plans is computed by the median number of possible plans in the the
rest of the 766 consumers.
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Algorithm 1 Computing the number of possible plans for the

Electricity Customer Behavior Trial project.

Require: z representing a default value for l
1: if a2 = 1 then
2: l = z + 3
3: else if a2 = 2 then
4: l = z + 2
5: else if a2 = 3 then
6: l = z + 1
7: else if a2 = 4 then
8: if a1 = 3 then
9: l = z

10: else if a1 < 3 then
11: l = z + 1
12: else // a1 > 3
13: l = z − 1
14: end if
15: else if a2 = 5 then
16: if a1 = 3 then
17: l = z − 1
18: else if a1 < 3 then
19: l = z
20: else // a1 > 3
21: l = z − 2
22: end if
23: end if

Ensure: number of possible plans l for each agent

The weights of discomfort are computed by the answers of

consumers to the following two questions:

Question 3. It is too inconvenient to reduce our usage of
electricity7.

Question 4. I am interested in changing the way I use
electricity if it helps environment8.

Based on the possible answers {1, ..., 5}, where 1 stands for

a strong agreement and 5 stands for a strong disagreement,

the weights ws
i and wa

i for each agent i are computed by

normalizing the answers in the range [0, 1].

B. The Olympic Peninsula Smart Grid Demonstration project

This project assesses the adjustment of individual energy

usage based on price signals exchanged within a two-way

bidding market [12]. The project concerns the period of

March 2006 to March 2007 with 112 household participants

regionally distributed in the Olympic Peninsula of the USA.

The data subset from November 2006 to March 2007 is

selected during which the lowest number of missing values

is observed. The demand of each consumer is captured every

5 minutes. Demand data are aligned to the sampling rate of

the Electricity Customer Behavior Trial project by aggregating

7This is question ‘4352’ in the residential pre-trial survey.
8This is question ‘4331’ in the residential pre-trial survey.

12 consecutive demand bids of each hour to a single hourly

demand bid.

Demand data are filtered out to contain 29 consumers that

(i) either belong to the CONTROL group or have a FIXED type

of contract and (ii) have less than 20% of their values missing.

Two extra consumers are excluded as their demand time series

contains a large proportion of zero values. Therefore the final

number of consumers used in the evaluation is 27. The missing

values in the final consumers are interpolated by computing

the average demand values in the past and future 10 days.

In the context of this project, the demand adjustment is

achieved by dynamically modifying the temperature setpoints

of various household devices. Motivated by this approach, the

number of possible plans l = f2(z = x) is defined by a

function that captures the selected temperature setpoints of

consumers during project runtime. More specifically, the range

of minimum and maximum temperature setpoints selected is

normalized to l ∈ {z, ..., z + 4} for a given constant z.

V. EXPERIMENTAL EVALUATION

This section experimentally evaluates unfairness under de-

mand planning in the two Smart Grids projects illustrated

in Section IV. It also shows how a global metric such as

unfairness can be locally controlled by the number of plans

that agents generate.

The possible plans available to the agents are generated

by clustering the energy consumption time series of the 10

most recent days that is the length of the sliding clustering

window. The number of plans is selected according to two

different criteria: (i) by assigning a default number of plans to

each agent and (ii) by computing the number of possible plans

based on project data. In the first case, the minimum number of

l = 2 is selected. This number minimizes the computational

cost in each agent9. In the second case, the agents reason

about the consumer preferences collected by each project, e.g.,

survey answers and temperature setpoints. Load-adjustment

and load-shifting are performed on a random day of each

week, simulating in this way a demand-response event. An

implementation of the hierarchical clustering algorithm [13] in

Weka10 is used for generating the possible plans11 of the agents

with the value of z = 2. Figure 1 illustrates the normalized

histogram of the number of possible plans l in the two Smart

Grid projects. Figure 2 illustrates the normalized histogram of

the two discomfort weights, computed from the answers of

consumers in Question 3 and 4.

Given that load-shifting requires coordinated plan selections

as illustrated in Section II, an implementation of EPOS in the

Protopeer [14] toolkit is used for this purpose. EPOS coor-

dinates demand by letting agents interact over self-organized

tree topologies [15]. For the same tree topology, 10 instances

are generated, in each of which the agents are positioned

9Unfairness is also minimized as shown in this paper.
10http://www.cs.waikato.ac.nz/ml/weka/ (last accessed September 2013)
11Note that if l ≤ 1, then an agent selects the median time series from the

sliding clustering window
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Fig. 1. The normalized histogram for the number of possible plans l under
z = 2.
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Fig. 2. The normalized histogram of shifting ws
i and adjustment wa

i dis-
comfort weights derived from the pre-trial survey of the Electricity Customer
Behavior Trial project.

randomly, so as to eliminate possible bias introduced by a

certain topological positioning of the agents.

A. Temporal Influence

Figure 3 illustrates unfairness when load-adjustment is

performed. For the Electricity Customer Behavior Trial project

in Figure 3a, a temporal influence is observed. During winter

time, unfairness increases, while during summer time (July

and August), unfairness is minimal. Figure 4b does not show a

clear temporal influence. A possible explanation is that for this

Smart Grid project a significantly lower number of consumers

is available, whose energy consumption data spans over a

shorter time range (from November to March) that does not

reach summer time.

Figure 4 illustrates unfairness when load-shifting is per-

formed. The same temporal pattern is observed in Figure 4a

as in Figure 3a. Unfairness in demand planning is higher in

winter time than in summer time. Figure 4b shows lower

unfairness in November than in the rest of the winter days.

In order to understand these temporal patterns, the total

demand from CONTROL-DATA for the two Smart grid projects

is plotted in Figure 5. The total demand of Irish households

is higher in winter than in summer. The same holds for

the households of Olympic Peninsula that reach the highest

demand on December and January.

Note that there is a strong correlation between the unfair-

ness and the total demand for both Smart Grid projects as
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Trial project.
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(b) Olympic Peninsula Smart Grid
Demonstration project.

Fig. 3. The values of adjustment discomfort under load-adjustment for each
agent (dots with values on the right Y axis). Their dispersion shows the
unfairness for the two Smart Grid projects (line with values on the left Y
axis).

20
10

-0
1-

09
  

20
10

-0
3-

17
  

20
10

-0
5-

28
  

20
10

-0
8-

06
  

20
10

-1
0-

14
  

20
10

-1
2-

22
  

0.02

0.04

0.06

0.08

0.1

U
nf

ai
rn

es
s

0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 s
hi

fti
ng

 d
is

co
m

fo
rt

(a) Electricity Customer Behavior
Trial project.

 

20
06

-1
2-

08
  

20
07

-0
1-

16
  

20
07

-0
2-

22
  

20
07

-0
3-

29
  

-0.2

0

0.2

0.4

0.6

0.8

1

U
nf

ai
rn

es
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
or

m
al

is
ed

 s
hi

fti
ng

 d
is

co
m

fo
rt

(b) Olympic Peninsula Smart Grid
Demonstration project.

Fig. 4. The values of shifting discomfort under load-shifting for each agent
(dots with values on the right Y axis). Their dispersion shows the unfairness
for the two Smart Grid projects (line with values on the left Y axis).
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(b) Olympic Peninsula Smart Grid
Demonstration project.

Fig. 5. The total demand from CONTROL-DATA for the two Smart Grid
projects.

illustrated in Table I. The Pearson correlation coefficient is

always positive for both load-adjustment and load-shifting. For

example, the correlation coefficient is 0.92 between unfairness

(Figure 4a) and the total demand (Figure 5a) under load-

shifting. The low but positive correlation of 0.15 under load-

shifting in the Olympic Peninsula Smart Grid Demonstration
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project is explained by the low number of consumers that

participate in demand planning.

TABLE I
THE CORRELATION COEFFICIENTS BETWEEN UNFAIRNESS AND THE

TOTAL DEMAND FROM CONTROL-DATA.

Load-adjustment Load-shifting

Electricity Customer Behavior Trial 0.80 0.92

Olympic Peninsula Smart Grid
Demonstration

0.82 0.15

The positive correlation values show that a temporal influ-

ence of unfairness comes from the fact that weather influ-

ences the demand level of consumers. If demand is higher

under load-adjustment and load-shifting, a higher unfairness

becomes more probable in the discomfort that consumers

experience.

B. Control of Unfairness

Albeit unfairness is a global metric, it can be locally

controlled by influencing the number of possible plans that the

agents generate. This section studies the effect that the number

of possible plans have in unfairness. For this purpose, agents

are grouped according to the number of plans they generate

as shown in Figure 1. Given that the values of unfairness are

normalized as shown in Equation (3) and (4), the two groups

are compared in Figure 6 and 7 under load-adjustment. In both

figures, unfairness increases as the number of plans increases.
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Fig. 6. The values of adjustment discomfort under load-adjustment for agents
with different number of possible plans l (dots with values on the right Y axis).
Their dispersion shows the unfairness for the Electricity Customer Behavior
Trial project (line with values on the left Y axis).

More specifically, unfairness increases 53.4% on average

when the number of possible plans increases from 2 to 4 for

the Electricity Customer Behavior Trial project. The respective

increase is 39.0% on average for the Olympic Peninsula Smart

Grid Demonstration project.

The unfairness for different number of possible plans under

load-shifting is 2.9% higher on average for the Electricity Cus-

tomer Behavior Trial project. This increase does not indicate

a clear influence as it is significantly lower than the one in

load-adjustment.

Unfairness is not the only factor that is influenced by the

number of possible plans that agents generate. Earlier work

shows that a higher number of possible plans increases the
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Fig. 7. The values of adjustment discomfort under load-adjustment for agents
with different number of possible plans l (dots with values on the right Y axis).
Their dispersion shows the unfairness for the Olympic Peninsula Smart Grid
Demonstration project (line with values on the left Y axis).
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(a) Electricity Customer Behavior
Trial project.
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(b) Olympic Peninsula Smart Grid
Demonstration project.

Fig. 8. Average daily energy demand for the two Smart Grid projects.

potential of stabilizing energy consumption, since the agents

have a higher degree of freedom to make choices that match

system-wide objectives [7]. Figure 9 and 10 show the different

demand curves achieved in groups of consumers whose agents

generate different number of possible plans. Figure 8 shows

the respective curves for the total number of agents.
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(a) l = 2.
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(b) l = 4.

Fig. 9. Average daily energy demand of agents with different number of
possible plans l for the Electricity Customer Behavior Trial project.

The average daily demand curves show that as the num-

ber of possible plans increases, the load-adjustment and

load-shifting demand curves differ to a higher extent from
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CONTROL-DATA. In practice, the morning and evening power

peaks under load-adjustment experience a more significant

reduction with l = 4 than with l = 2 in both Smart Grid

projects. Under load-shifting, a higher demand increase is

observed during low-peak times as l increases, for example,

the early morning times in both Smart Grid projects.
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Fig. 10. Average daily energy demand of agents with different number of
possible plans l for the Olympic Peninsula Smart Grid Demonstration project.

These demand curves indicate that a more effective load-

adjustment and load-shifting is ensured by consumers with a

higher number of possible plans, who also experience a higher

discomfort, causing in this way higher unfairness at a global

level.

C. Summary of findings

The following findings summarize the experimental evalu-

ation of this section:

1) Unfairness in demand planning is temporally influenced.

For example, unfairness is higher in winter than in

summer.

2) The temporal influence of unfairness in demand planning

is correlated to the different demand levels observed

during the year.

3) Unfairness in demand planning is locally controllable by

the number of possible plans that the agents generate:

the lower the number of possible plans, the lower the

unfairness.

4) A more effective load-adjustment and load-shifting re-

sults in a higher unfairness in demand-planning.

VI. COMPARISON WITH RELATED WORK

Fairness (or unfairness) in demand-side energy management

is a relatively unexplored research area. This section outlines

the most relevant work that is related to this paper.

Stadler et al. argue that communication protocols are a

key aspect of a market-based demand-side ancillary service to

ensure fairness [1]. If, for example, a request for load shedding

is small enough to be fulfilled by a single participant in the

ancillary service market, it might be that the fastest participant

to retrieve the request always wins the monetary incentive

attached to it. With a well-designed communication protocol,

load shedding requests can be delivered to all the participants

at the same time, or alternatively in a round-robin fashion, to

ensure that all participants have their turn [3].
It is shown that billing mechanisms can be designed to be

fair in autonomous demand-response mechanisms [2]. Fairness

is achieved by rewarding consumers according to their con-

tributions to meet system-wide objectives. In contrast to this

approach, the concept of unfairness introduced in this paper

focuses on how discomfort is distributed among consumers.

Moreover, the authors of [2] do not focus on the factors

that affect fairness and how fairness can be controlled by the

system designer.
A fair allocation of power to air-conditioners is introduced

in [16]. Two notions of fairness are studied, (i) the min-max
fairness that concerns the lowest temperature that consumers

can have and (ii) the proportional fairness that deals with the

fraction of requested cooling that each consumer has. Fairness

is controlled in a centralized fashion by utility companies, in

contrast to this work that introduces a local control of fairness

by adjusting the number of possible plans that agents generate.
A similar centralized optimization approach for fairness and

discomfort is introduced by [17], in which two scheduling

algorithms are proposed: (i) highest power next and (ii) round
robin. Discomfort is monitored according to the duration in

which room temperatures deviate from the desired temper-

ature, whereas this paper evaluates discomfort a posteriori,
using real datasets from two operational Smart Grid projects.

VII. CONCLUSION

This paper concludes that unfairness in the distribution

of discomfort between consumers is measurable and con-

trollable in decentralized planning of energy demand. This

paper shows how reasoning about the perception of consumers

in discomfort is possible. It also shows that unfairness is

temporally influenced given the correlation of unfairness with

different seasonal demand levels observed in real demand

data. When load-adjustment and load-shifting become more

effective, unfairness increases. This observation shows a per-

formance trade-off in the design of demand-response programs

that provides a more in-depth understanding about the role of

consumers in demand-side energy management. The findings

of this paper can be used to improve and motivate a broader

adoption of fair demand-respond programs in Smart Grids.
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