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Abstract Given a finite, undirected graph G (possibly with
multiple edges), we assume that the vertices are operational,
but the edges are each independently operational with proba-
bility p. The (all-terminal) reliability, Rel(G,p), of G is the
probability that the spanning subgraph of operational edges
is connected. It has been conjectured that reliability func-
tions have at most one point of inflection in (0,1). We show
that the all-terminal reliability of almost every simple graph
of order n has a point of inflection, and there are indeed in-
finite families of graphs (both simple and otherwise) with
more than one point of inflection.
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1 Introduction

Our daily activities rely increasingly on large scale techno-
logical networks—the power grid, the Internet, transporta-
tion systems, to name but a few. These networks are of-
ten controlled in a decentralized way and show proper-
ties of self-organization. However, even if decentralization
and self-organization theoretically reduce the risk of failure,
complex networks can experience disruptive and massive
failure. In 2001, Code Red, a computer virus that incapac-
itated numerous networks, resulted in a global loss of 2.6
billion US dollars. In 2004, the Sassar virus caused Delta
airlines to cancel 40 transatlantic flights in addition to halt-
ing trains in Australia. In another example concerning the
power grid, the Northeastern and Midwestern United States,
and Ontario, Canada suffered a massive widespread power
outage in August, 2003. A more recent example is the large
blackout that occurred in Brazil in 2009, which plunged
40 % of the country into darkness. Since our daily routines
would cease if these technological infrastructures were to
disintegrate, maintaining the highest levels of availability in
these networks is of crucial importance. Therefore, as a first
step, we need to be able to assess the robustness of networks,
which obviously depends on the type of disruption.

In this paper the performance indicator for robustness we
will focus on is the availability, when the network is subject
to probabilistic disruptions, rather than sabotage (see, for ex-
ample, [2, 7]). The availability is defined as the fraction of
time that a given system will be functioning as required [3].
For instance, for the traditional telephony service often a five
nines (99.999 %) availability is guaranteed. The availability
of a network generically depends on two factors: the avail-
ability of the individual network components and the topol-
ogy of the network. The formula to compute the availability
of a network component is A = MTBF/(MTBF + MTTR),
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where MTBF denotes the mean time to failure and MTTR
the mean repair time. The topology of a network, of course,
also effects its availability. For instance, higher redundancy
in the network (e.g. more links connecting network nodes)
will lead to a higher availability.

We will model a network subject to random component
failures as a finite, undirected probabilistic graph G(V,E)

which consists of a set V of n nodes and collection E of
m edges (all graphs in this paper are assumed to be undi-
rected and finite, without self-loops). Nodes represent com-
munication centers in the network while edges correspond to
bidirectional communication links. We further assume that
nodes are always operational while the edges are subjected
to independent failures. More precisely we assume that each
edge operates with link probability p independently. Note
that the probability p can be interpreted as the availability of
the links. The assumption that the nodes never fail is based
upon the fact that node failures occur much less frequent
than link failures, which occur, for example, when optical
fibers are unintentionally broken by means of shovels.

We are interested in assessing the probability that any
pair of nodes in the network can communicate with each
other; equivalently, this is the probability that the corre-
sponding graph G is connected. This is referred to as the
all-terminal reliability (or simply the reliability) of the net-
work. There is a long history of research into all-terminal
reliability as a measure of robustness of the network, with
most work directed at efficiently bounding the function [5].

The reliability polynomial Rel(G,p) is a polynomial in p

indicating the probability that graph G contains at least one
spanning tree, in other words, that the network is connected.
The reliability polynomial is a function of both p and the
topology of the graph G. The function f = Rel(G,p) is not
identically 0 if we restrict to connected graphs G (which we
do throughout), and the function then is increasing on (0,1),
with f (0) = 0 and f (1) = 1. Moore and Shannon [9] proved
that for every C > 0, every reliability polynomial crosses the
curve

Cp

1 − p(1 − C)

at most once as p ranges from 0 to 1. In this paper we in-
vestigate the shape of the reliability curve, in terms of its
concavity, and answer an open problem.

2 Points of inflection in (0,1)

Colbourn [6] conjectured that reliability polynomials have
at most one point of inflection in (0,1) (they need not have
any points of inflection in the interval, as the graph consist-
ing of a bundle of k ≥ 1 edges has all-terminal reliability
1 − (1 − p)k , which has no point of inflection in (0,1)).

Fig. 1 All simple graphs of order at most 7 whose reliability functions
have more than one point of inflection

Graves [8] considered points of inflection for general re-
liability systems, and showed that there are systems whose
reliabilities have more than one point of inflection. How-
ever, these systems do not arise as all-terminal reliability of
graphs. The issue of whether all-terminal reliability polyno-
mials can have more than one point of inflection was settled
recently [4], where an examination of the reliability of sim-
ple graphs (that is, those without multiple edges) of small
order show that there are indeed graphs whose reliability
polynomials have more than one point of inflection. Figure 1
shows the smallest simple graphs whose reliability polyno-
mials have more than one point of inflection; all of these
have 7 vertices and 10 edges, the same reliability function,
namely 45p6 −128p7 +142p8 −72p9 +14p10 (see Fig. 2)
and points of inflection at p ≈ 0.81898,0.87866. There are
no other such simple graphs of order at most 7.

3 When do the reliability polynomials of graphs have at
least one point of inflection?

We first turn to the question of when reliability polynomials
have at least one point of inflection. We have seen that a
bundle of k parallel edges has no point of inflection in (0,1),
and the same is true for all trees. In fact, we can show that
every connected graph G, with n vertices and m edges, can
be embedded as an induced subgraph of a connected graph
H such that the reliability polynomial of H has no point of
inflection, and furthermore, we can take H to be simple if G

is.
The argument is as follows. Let Hk be a graph formed

from G by appending k ≥ 2 leaves to vertices of G, in any
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Fig. 2 Second derivative of the reliability polynomial of the graphs in
Fig. 1

way. It is clear that Rel(Hk,p) = pk Rel(G,p). We write
Rel(G,p) in its F -form (see, for example, [5]) as

Rel(G,p) =
m−n+1∑

i=0

Fi(1 − p)ipm−i (1)

where Fi counts the number of subsets S of the edge set of G

of size i whose removal leaves G connected. The Fi , arising
as face numbers in a simplicial complex, satisfy Sperner’s
Bound [11],

(i + 1)Fi+1 ≤ (m − i)Fi (2)

for all i = 0,1, . . . ,m − n. A calculation shows that the
second derivative of Rel(Hk,p) = pk

∑
Fi(1 − p)ipm−i is

equal to pk−2 ∑
Li(1 − p)ipm−i where

Li = k(k − 1)Fi + 2k
(
(m − i)Fi − (i + 1)Fi+1

)

+ (i + 2)(i + 1)Fi+2 − 2(i + 1)(m − i − 1)Fi+1

+ (m − i)(m − i − 1)Fi. (3)

Now for i = 0,1, . . . ,m−n+1, we have that Fi > 0. More-
over, by Sperner’s Bound (2), we have that (m − i)Fi −
(i + 1)Fi+1 ≥ 0. As the last three terms on the right side
of (3) are constants with respect to k, it follows that for
large enough k, Li > 0 for i = 0,1, . . . ,m − n + 1, and so
pk−2 ∑

Li(1 − p)ipm−i > 0 on (0,1); that is, Hk , which
has G as an induced subgraph (and is simple if G is) has no
points of inflection in (0,1).

So how common are reliability polynomials with points
of inflection? We can show that the reliability polynomi-
als of almost all simple graphs (that is, almost all random
graphs of order n in the Erdös–Rényi model G(n,ρ) with
edge probability ρ) have a point of inflection in (0,1). To
do so, we begin with a series of lemmas, each interesting
in their own right. Note that for a connected graph G with
its reliability’s F-form given by (1), a calculation shows that
Rel(G,p)′′ is equal to

m−n+1∑

i=0

(
(i + 2)(i + 1)Fi+2 − 2(m − i − 1)(i + 1)Fi+1

+ (m − i)(m − i − 1)Fi

)
(1 − p)ipm−i−2

where Fj = 0 for j > m − n + 1. Recall that the edge con-
nectivity of a graph is the minimum number of edges whose
removal disconnects G (if G consists of a single vertex, we
define its edge connectivity to be 0).

Proposition 1 If G has edge connectivity c ≥ 2, then the
reliability of G is concave down near p = 1.

Proof For i < c, from the definition of Fi we see that

Fi =
(

m

i

)
,

and

Fc ≤
(

m

c

)
− 1.

Thus for i = 0,1, . . . , c − 3 we have

(i + 2)(i + 1)Fi+2 − 2(m − i − 1)(i + 1)Fi+1

+ (m − i)(m − i − 1)Fi

= (i + 2)(i + 1)

(
m

i + 2

)
− 2(m − i − 1)(i + 1)

(
m

i + 1

)

+ (m − i)(m − i − 1)

(
m

i

)

= m!
(m − i − 1)!i! − 2

m!
(m − i − 1)!i! + m!

(m − i − 1)!i!
= 0,

while for i = c − 2, we have

(i + 2)(i + 1)Fi+2 − 2(m − i − 1)(i + 1)Fi+1

+ (m − i)(m − i − 1)Fi

≤ −c(c − 1).

It follows that for p sufficiently close to 1, Rel(G,p)′′ ≤
−c(c − 1) ≤ −2, that is, Rel(G,p) is concave down near
p = 1. �
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Proposition 2 Let G be a connected graph on at least 3
vertices. Then the reliability of G is concave up near p = 0.

Proof In the F -form of the reliability of G (1), consider
the largest j such that Fj > 0; clearly j ≤ m − 2 as G has
at least 3 vertices. Then the dominant term of Rel(G,p)′′
when p is close to 0 is last term, (m − j)(m − j − 1)Fj ×
(1 − p)jpm−j−2 > 0, and hence Rel(G,p) is concave up
near p = 0. �

We are now ready to prove the main result.

Theorem 1 Let ρ ∈ (0,1). Then the reliability of almost ev-
ery simple graph G ∈ G(n,ρ) of order n has at least one
point of inflection, that is, the proportion of labeled simple
graph on {1,2, . . . , n} whose reliability polynomial has at
least one point of inflection tends to 1 as n → ∞.

Proof Almost every simple graph G has edge connectivity
at least 2. To see this, note that if a graph G of order n has
edge connectivity at most 1, then it has a partition of its ver-
tices into two (nonempty) sets U and W with at most one
edge between them; without loss, |U | ≤ n/2. If E(U,W) is
the event that there is at most one edge between U and W ,
then for i = |U |, we have

Prob
(
E(U,W)

)

= (1 − ρ)i(n−i) + i(n − i)ρ(1 − ρ)i(n−i)−1.

It follows that the probability that G has edge connectivity
less than 2 is at most

	n/2
∑

i=1

(
n

i

)(
(1 − ρ)i(n−i) + i(n − i)ρ(1 − ρ)i(n−i)−1).

Now it is not hard to check that

	n/2
∑

i=1

(
n

i

)
(1 − ρ)i(n−i) ≤

	n/2
∑

i=1

ni(1 − ρ)in/2

≤
	n/2
∑

i=1

(
n(1 − ρ)n/2)i

<

∞∑

i=1

(
n(1 − ρ)n/2)i

= n(1 − ρ)n/2 1

1 − n(1 − ρ)n/2

< 2n(1 − ρ)n/2

for n sufficiently large. It follows from this that the probabil-
ity that G does not have edge connectivity at least 2 is less
than

2n(1 − ρ)n/2 + 2n3ρ(1 − ρ)−1+n/2

Fig. 3 Graph Gn of order n + 3

which tends to 0 as n → ∞.
For any such graph, from Propositions 2 and 1 its relia-

bility changes from concave up to concave down over (0,1),
and hence it has a point of inflection in the interval. �

4 Infinite families of graph whose reliability
polynomials have more than one point of inflection

We can show that there are indeed infinitely many graphs
that have more than one point of inflection.

Theorem 2 For n ≥ 1 let Gn be the graph on vertex set
{0,1, . . . , n + 2} formed from the star K1,n+2 by replacing
n of the edges by a set of three edges in parallel (see Fig. 3).
Then Rel(Gn,p) has at least two points of inflection for any
n ≥ 5.

Proof The reliability of Gn is given by

fn(p) = p2(1 − (1 − p)3)n
.

To simplify matters, we make the substitution q = 1 − p,
and observe that q0 ∈ (0,1) is a point of inflection of

gn(q) = (1 − q)2(1 − q3)n

if and only if p0 = 1 − q0 is a point of inflection of fn(p).
Thus it suffices to show that g = gn(q) has two points of
inflection in (0,1).

With a bit of calculation, we find that

g′′

(1 − q)2(1 − q3)n−2

= (
9n2 + 9n + 2

)
q4 + (12n + 4)q3

+ (12n + 6)q2 − (6n − 4)q + 2.

We set

hn(q) = (
9n2 + 9n + 2

)
q4 + (12n + 4)q3 + (12n + 6)q2

− (6n − 4)q + 2.

Note that close to 0 and close to 1, h = hn(q) is positive. If
we can show that hn(q) is negative somewhere between 0
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and 1, then hn(q) (and hence g′′ = (1 − q2)(1 − q3)n−2h)
will change sign twice in (0,1). This will show that gn(q),
and therefore fn(p), the reliability of Gk , has at least two
points of inflection in (0,1).

A visual inspection of some plots of hn reveals that in-
deed hn takes on negative values in (0,1), where the loca-
tion of the roots of hn seems to move to the left for large n.
In fact, evaluating hn at q = 1/n, we find that

hn(1/n) = −4 + 16

n
+ 27

n2
+ 13

n3
+ 2

n4
,

which is clearly a decreasing function of n. Moreover,
h6(1/6) = −169/324 < 0, so that hn(1/n) is negative for
n ≥ 6. It follows that h changes sign (at least) twice in (0,1)

for n ≥ 6. Direct computation shows that this holds as well
for n = 5, so we conclude that fn(p), the reliability of Gn,
has at least two points of inflection in (0,1) for all n ≥ 5. �

One can see that hn(q) has, in fact, exactly two sign
changes for any n ≥ 1. Descartes’ Rule of Signs (see, for ex-
ample, [1, p. 171]) states that the number of positive roots of
a polynomial with real coefficients is the equal to the number
of sign changes between nonzero coefficients, or less than
that by a multiple of 2. It follows that hn(q) has at most two
positive roots, and hence Rel(Gn,p) has exactly two points
of inflection in (0,1) for any n ≥ 5.

We also remark that the reliability of a graph formed from
any tree of order n, by replacing each edge by a set of three
edges in parallel, and then adding two leaves, will have the
same reliability as the graph Gn, and hence will provide as
well examples of graphs whose reliability polynomial has
exactly two points of inflection in (0,1).

What about points of inflection for the reliability of sim-
ple graphs? Are the multiple edges necessary for the reliabil-
ity to have more than one point of inflection? The answer is,
in fact, no. From numerical computations we have verified
that for n ≤ 100, the graphs formed by adding two leaves
to K3,n, the complete bipartite graph with cells of size 3
and n (also known as triple stars [12]), leads to examples
of simple graphs with two inflection points. The next theo-
rem shows that these are indeed examples of simple graphs
whose reliability polynomials have more than one point of
inflection, provided n is large enough.

Theorem 3 Let Hn be the graph formed from the complete
bipartite graph K3,n by attaching two new vertices of de-
gree 1 each to a vertex of K3,n. Then Rel(Hn,p) has at least
two points of inflection for n sufficiently large.

Proof The reliability of K3,n is known to be (see [12])

Rel(K3,n,p)

= pn
((

3 − 3p + p2)n − 3(1 − p)n(3 − 2p)n

+ 2 · 3n(1 − p)2n
)
,

so it follows that

Rel(Hn,p)

= hn(p) = pn+2((3 − 3p + p2)n − 3(1 − p)n(3 − 2p)n

+ 2 · 3n(1 − p)2n
)
.

By Proposition 2 of the previous section, Rel(Hn,p) is con-
cave up at p = 0. A computation shows that for n ≥ 3,
Rel(Hn,p) is concave up at p = 1 because h′′

n(1) = 2.
It remains to show that for some p ∈ (0,1), the second

derivative of Rel(Hn,p) is negative, or equivalently, that
h′′

n(p) < 0 for some p ∈ (0,1). Another calculation shows
that

lim
n→∞h′′

n(1 − 1/n) = −4e < 0.

It follows that for n sufficiently large, the second derivative
of Rel(Hn,p) is negative at p = 1−1/n, and Hn has at least
two points of inflection in (0,1). �

We remark that K3,n was suggested by [10] as a surviv-
able optical network structure.

The question whether any graph, simple or otherwise, can
have more than two points of inflection, remains open. We
pose a final question: what is the closure of the inflection
points in (0,1) of reliability polynomials? Figure 4 plots the
points of inflection of all simple graphs of order 9, and we

Fig. 4 Inflection points in (0,1) of the reliability polynomials of sim-
ple graphs of order 9
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Fig. 5 Inflection points in (0,1) of the reliability polynomials of sim-
ple graphs of order 9 with multiple points of inflection in the interval

are led to conjecture that the closure of the inflection points
in (0,1) is, in fact [0,1]. When looking at the points of in-
flections in (0,1) for reliability polynomials with more than
one point of inflection in the interval, we, of course, get a
sparser picture (see Fig. 5), and it may be true that there is a
inflection point free open interval in [0,1].
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