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Abstract—Cascading failures are the main reason blackouts
occur in power networks. The economic cost of such failures is in
the order of tens of billion dollars annually. In a power network,
the cascading failure phenomenon is related to both topological
properties (number and types of buses, density of transmission
lines and interconnection of components) and flow dynamics
(load distribution and loading level). Existing studies most often
focus on network topology, and not on flow dynamics. This
paper proposes a new metric to assess power network robustness
with respect to cascading failures, in particular for cascading
effects due to line overloads and caused by targeted attacks.
The metric takes both the effect of topological features and the
effect of flow dynamics on network robustness into account, using
an entropy-based approach. Experimental verification shows
that the proposed robustness metric quantifies a power grid
robustness with respect to cascading failures.

I. INTRODUCTION

The power grid is one of the most important critical in-
frastructures in today’s society. Due to careful control and
management, it has been operating for decades most often
with great reliability. Careful control and management of the
power grid greatly limits the risk of failures. Massive blackouts
in the power grid, however, still occur. Blackout analysis of
15 years of data by the North American Electrical Reliability
Council (NERC) shows that blackouts happen on average
once every 13 days [1] causing economic costs in the order
of tens of billion dollars per year. For example, in 2003,
the North-eastern and Mid-western United States and, South-
eastern Canada suffered a catastrophic blackout leaving 50
million people without power for up to several days [2]. A
more recent example is the large blackout in Brazil in 2009
that left 40% of the country without power [3].

In a power grid, power flows from generation to distribution
stations through the transmission lines. Failure of any single
line, by random breakdown or attack, changes the balance of
power flow and leads to global redistribution of flows over
the grid. Global redistribution of flows, in turn, may lead
to overloaded transmission lines. Circuit breakers trip these
overloaded lines when these lines reach their maximum flow

limits (due to thermal, stability or voltage drop constraints)
and new overload failures follow. This cascading process may
stop after a few steps but it can also propagate and leave a
considerable part of a network without power.

The electric power grid has grown into one of the most
complex technological networks. The highly interconnected
structure of power grid enables it to deliver power over huge
distances. Yet, it also propagates local failures into the global
network causing cascading failures. To counter this effect, the
problem of cascading failures has to be analysed from the
point of view of the system level and from the perspective
of global network [4], [5]. A global analysis of a large-scale
power grid is a challenge for traditional approaches relying
purely on power flow based analysis (e.g. N-x contingency
analysis) due to the complexity and extremely large amount
of computational time. On the other hand, recent advances
in the field of complex networks theory [6], [7] have shown
the promising potential of the complex networks approach to
model and analyse power networks at the system level.

This paper proposes a metric that quantifies robustness of a
power transmission grid with respect to cascading failures by
targeted attacks. A power grid is considered to be a complex
network, and the electric power the physical quantity flowing
through it. Steady-state operation and cascades due to the
overloads are considered. A power grid is characterized by its
topology and physical properties. Its topology describes the
interconnection between its individual components, namely,
transmission lines and generation, transmission and load buses.
The power flow in a network is controlled by its physical
properties: impedances, voltage levels at each individual power
station, voltage phase differences between power stations and
loads at terminal stations. This paper models a power grid as
a directed graph [8], in which nodes represent buses while
lines correspond to transmission lines. The flow values in the
lines are computed by using direct current (DC) load flow
analysis [9], [10].



II. CASCADING FAILURES IN POWER GRIDS

Power grid robustness, including cascading failures phe-
nomena, is an active field of research. Most contributions from
the literature are based on modelling and analysing cascading
failure mechanisms in power networks using complex network
approaches. In a vast majority of these papers, authors consider
the power grid as a complex network in which electricity
is exchanged between nodes through the shortest or most
efficient path. Cascading failure mechanism is simulated in
the resulting models of power grids [11], [12], [13]. In these
approaches, the load of a particular component is modelled
by betweenness centrality [14]. The capacities of individual
transmission lines are assumed to be proportional to their
initial loads with a modelling parameter, namely, network
tolerance parameter α (See Eq. (3) in Section III for details).
In [11] and [13] the damage of cascading failures is quantified
in terms of the relative size of the giant component [14] while
in [12] it is measured in terms of the decrease in network
efficiency [15]. In contrast to these more theoretical studies,
Kinney et al. [16] have deployed the model proposed in [12]
to simulate cascading failures in the North American power
grid. They assess network robustness with respect to cascading
failures for different tolerance parameter values in targeted-
and random failure scenarios. In addition to these cascad-
ing failure modelling studies, other power grid vulnerability
studies address the problem of locating the most important
components in the network so that these components can be
backed up in emergency cases to avoid overloading of these
components [17], [18], [19].

Although there is substantial literature on recovery strategies
in the case of cascading failures and understanding/analysing
cascading failures in power networks, hardly any attention has
been paid to quantifying network robustness with respect to
cascading failures. To the best of our knowledge, Youssef et
al. [20] is the only study that proposes a metric to measure
network robustness with respect to cascading failures. Their
robustness metric depends on the probability of link survivals
as well as the depth of the cascading failure.

As pinpointed by several authors [11], [12], [13] hetero-
geneous load distribution in the network is one of the main
driving forces behind cascading failures due to line overloads.
This paper proposes a robustness metric that incorporates
heterogeneity of load distribution and loading level of the
network using an entropy-based approach.

III. ROBUSTNESS METRIC

The proposed robustness metric relies on two main con-
cepts: nodal robustness and electrical node significance . This
section elaborates on these new concepts and explains the
computational algorithm with which to calculate the robustness
metric value.

A. Nodal robustness

The robustness metric this paper introduces is an aggregate
of local robustness values that indicate nodal robustness. Nodal
robustness quantifies the ability of a node to resist cascades of

link overload failures. Quantifying nodal robustness requires
both flow dynamics and network topology to be taken into
account. Three factors are of importance: (i) the homogeneity
of load distribution on out-going links; (ii) the loading level
of the out-going links; and (iii) the out-degree of the node.

Fig. 1. Different load distribution homogeneities, same node out-degree

Fig. 2. Same load distribution homogeneities, different node out-degree

In Figure 1, the effect of load distribution homogeneity
on cascades of link overload failures is considered in a very
simple case to provide a basic intuition about cascading failure
robustness. Assuming a network tolerance parameter α of 2
(i.e. a loading level of 50%), for a load distribution of 70 and
30 (i.e. capacity of lines A-B and A-C are 70 × α = 140 and 30
× α = 60, respectively), a failure in line A-B results in a load
increase of line A-C to 100 that exceeds the maximum capacity
of the line A-C (i.e. 60), causing an overload failure in line A-
C. However, if the load is distributed perfectly homogeneously
over lines (i.e. 50 and 50: capacity values for both links are
100), then, there will be no link overload failure (the capacity
of 100 is not exceeded) when one of links fails. Consequently,
a more homogeneous load distribution across lines increases
robustness with respect to cascades of link overload failures
while a relatively heterogeneous load distribution increases
the chance of link overload failure spread. Note that for an
increased loading level of 60%, link overload failure occurs
in both of the cases in Figure 1, whereas for a loading level
of 30%, in neither of the cases failure spreads. This shows
that there is an inverse relationship between nodal robustness
and loading level of the network. Finally, the effect of node
out-degree on the nodal robustness is illustrated in Figure 2. In
both of the cases, flow is perfectly distributed over available
paths. However, again for the loading level of 50%, Case 2
is more tolerant to link overload failure spread than Case 1.
This reflects the effect of out-degree on nodal robustness: the
larger out-degree a node possess the higher nodal robustness
it has.

Quantifying nodal robustness entails incorporating the three
factors illustrated in Figure 1 and Figure 2. To capture the



first and the last behaviours a well-known concept from
information theory is used: entropy. Furthermore, the network
tolerance parameter (i.e. α), proposed in [11], is used to
incorporate the loading level of the network. Deployment of
entropy for the nodal robustness computation makes it possible
to capture important cascading failure dynamics. Entropy of
a flow distribution of a node increases as flows over lines
are distributed more homogeneously and the node out-degree
increases.

The entropy of a given distribution is computed by Equa-
tion (1), in which pi stands for values in the distribution under
consideration, while L refers to the number of the sample
values in the distribution.

H =

L∑
i=1

pi log pi (1)

Tailoring Equation (1) to the nodal robustness concept, L
refers to the out-degree of the corresponding node, whereas pi
corresponds to normalized flow values on the out-going links,
which is given as:

pi =
fi∑L
j=1 fj

(2)

In Equation (2) fi refers to the flow value in line i. When
applying Equation (1) to the cases in Figure 1, the entropy
values are 0.2653 and 0.3010, respectively. Assuming the
same network loading level for each case, these values imply
that the second case is more robust than the first case with
respect to cascades of overload failures coinciding with the
aforementioned observations. When computing entropy values
for cases in Figure 2, 0.3010 and 0.4772 are obtained for
Case 1 and Case 2 respectively. Note that in case of a higher
out-degree and a more homogeneous load distribution, the
resulting entropy value becomes larger. This illustrates how
the entropy concept captures topology-and load distribution
homogeneity effects on cascading failure robustness.

The effect of loading level of the network on robustness
is incorporated using the network tolerance parameter α, that
relates initial load to the capacity of a line as:

Ci = αiLi (3)

The capacity of a line is defined as the maximum load that
can be carried by the line while the loading level (LLi) of an
arbitrary line is the ratio between the load and the capacity of
the corresponding line. Hence, there is an inverse relationship
between the loading level and the tolerance parameter of a
line:

αi =
1

LLi
(4)

Combining Equations (1), (2) and (4), nodal robustness of
a node i (i.e. Rn,i), that takes both the flow dynamics and
topology effects on network robustness into account, is then
defined as:

Rn,i = −
L∑

i=1

αipi log pi (5)

In Equation (5), the minus sign (-) is used to compensate
the negative nodal robustness value that occurs due to the
logarithm of normalized flow values (i.e. pi).

B. Electrical node significance

Due to the scale-free nature of power grids, some of the
buses act as hubs i.e. deal with a relatively larger amount of
power, while other nodes distribute a relatively small amount
of power. When a failure occurs at a link that originates from
one of the hub buses, a significant amount of power is exposed
to the remainder of the network. Redistributing this excess
power over adjacent components eventually causes further link
overload failures, which potentially results in a large-scale
power outage. Nevertheless, if a failure occurs at a link that is
connected to a less important node, its power is immediately
re-routed to adjacent components and the disturbance can,
usually, be suspended. This shows that nodes have different
impacts on the context of cascading failure robustness and
this impact depends on the amount of power, distributed by
the corresponding node. In this paper, impact of a particular
node is reflected by electrical node significance δ. Electrical
node significance of an arbitrary node i is computed as:

δi =
Pi∑N
j=1 Pj

(6)

where Pi stands for total power distributed by node i while
N refers to number of nodes in the network.

C. Network Robustness Metric

After computing nodal robustness and electrical node signif-
icance values, two different values are obtained for each node
in the network. The product of these two values indicates the
individual contribution of each node to the network robustness.
The network robustness metric calculation is finalized by
summing up these individual contributions of each node in the
network. The resulting metric RCF , shown in Equation (7),
quantifies network robustness with respect to cascading fail-
ures in power networks.

RCF =

N∑
i=1

Rn,iδi (7)

The normalized nature of electrical node significance as-
sures that the robustness of power networks with different size
can be compared.

IV. EXPERIMENTAL SET-UP

This section explains the experimental set-up used for
robustness metric verification analysis.



A. Power grid networks: IEEE 14 bus test system and syn-
thetic networks

The data required for the robustness metric verification anal-
ysis includes the admittance matrix of the network, the number
of buses, their types and finally their generation capacity and
load values. The IEEE test systems [21] include all of these
data. In this paper the IEEE 14 bus test system (see Figure 3)
is used as a reference, additional synthetically generated
networks based on this system are also used. The (generated)
synthetic networks have exactly the same properties as the
IEEE 14 network (e.g. topology, number of buses and links,
type of buses and their demand/generation capacity values)
except for the admittance matrix. The synthetic networks are
derived from the IEEE 14 bus network by randomly shuffling
transmission lines in the network. For example, a link lij
(with an admittance value yij) connecting nodes i and j is
exchanged with another link lmn (with an admittance value
ymn) connecting nodes m and n so that nodes i and j are
connected by lmn and nodes m and n by lij . This exchange of
links results in a different admittance matrix for the generated
network. Consequently, the distribution of power flow in the
network is influenced causing the synthetic grid to have a dif-
ferent load distribution (i.e. a different level of load distribution
heterogeneity). This in turn causes different RCF values and
different cascading failure survivability performances for each
generated grid.

Fig. 3. IEEE 14 busses test system
B. Attack scenario

An effective attack will always target the most critical
components in a network. This paper assess the criticality of a
node in the context of cascading failures based on its electrical
node significance value. The node with the highest electrical
node significance is determined to be the most critical node
in the network. The largest cascading failures in a power
network, most likely, occur if this node is attacked. For the
purpose of verification, this paper assumes that an intelligent
attacker will target the most important outgoing link (i.e. most
heavily loaded outgoing link) from the most critical node in the
network. Removal of this link will result in a cascading failure
for the power network, that relates directly to the robustness
of the power network with respect to targeted attacks.

C. Cascading failure simulation and assumptions

This paper models a power grid as a complex network in
which generation, transmission and load buses are modelled
as nodes while transmission lines are represented by edges. In
a power grid model, flow values through the network can be
estimated by AC or DC load flow equations. AC power flow
equations are non-linear equations modelling the flows of both
active and reactive powers, while DC load flow equations are
a simplification and linearisation of AC power flow equations
considering only flow of active power [9], [10]. Throughout
this paper, DC load flow analysis is performed for the given
test systems with the MATPOWER power network simulation
package [22], resulting in a flow matrix for each network.
A flow matrix is basically a connection matrix in which the
element fij corresponds to the power flow between node i
and node j. The robustness metric for each network setting
is computed by applying the theoretical approach (given in
Section III) on its flow matrix.

For the purpose of simulation, each network has to be
initialized in a similar manner for the results of the attack
scenario to be compared : (i) the node from which the line-to-
be-attacked origins, has the same electrical node significance
in each setting; and (ii) the line-to-be-attacked has the same
relative amount of power flow (compared to its adjacent lines)
in each setting. This approach ensures a fair initialization for
each network and that the same relative amount of excess
power is redistributed in each network.

To simulate a cascading failure, the line-to-be-attacked is
removed from the topology. Once a line is pruned, its flow is
distributed over its neighbours. This simulation assumes that
the excess power is distributed over all adjacent lines based on
their initial load [23]. Distribution of the excess power may
cause overloading of other neighbours resulting in tripping
of these lines by circuit breakers. This paper considers line
failures due to cascading effects and not on node failure. The
power carried by the newly failed lines is redistributed as well.
This procedure continues until no more lines are overloaded
and stability is attained. For sake of simplicity, this paper
assumes a deterministic model for line tripping mechanism.
A circuit breaker for a line l trips at the moment the load
of the line l exceeds its maximum capacity. Furthermore, no
mitigation strategies are deployed to alleviate cascade process.

The survivability of a network against cascading failures is
quantified empirically by the metrics Link Survivability (LS)
and Capacity Survivability (CS). LS is defined as the fraction
of lines that are still in operation after a cascading failure,
whereas CS is formulated as the fraction of the capacity of
these operational lines. A line is considered to be operational
if it is not tripped by the protection mechanism and if it
is not disconnected from generators so that it still delivers
power after the cascading failure. LS and CS are given in
Equation (8) and Equation (9). L and C stand for the total
number of links and the sum of the capacity of these links in
the original network while L

′
and C

′
are the new values after

the cascading failure.



LS =
L

′

L
(8)

CS =

∑L
′

i=1 Ci∑L
j=1 Cj

(9)

Both LS and CS are simulation-based metrics quantifying
power network robustness empirically. They are computed off-
line and require substantial computational power and time for
large networks, unlike RCF . Both LS and CS are used to
verify RCF in Section V.

Prior to starting the cascading failure simulation, the most
important node is determined based on the electrical node
significance values. The node that has the highest electrical
node significance value in the IEEE 14 bus test system
is determined: node 1 (see Figure 3). After that, the flow
distribution at node 1 is modified in such a way that 55% of the
flow goes through line 1-2 while the rest is sent through line
1-5. This is done to provide a fair initialization (as explained
in Section IV-C). Note that 55% is just a matter of choice, it is
important this value is the same for each generated network.

V. EXPERIMENTAL VERIFICATION

Verifying the robustness metric (RCF ) entails (1) gener-
ating synthetic sample networks from the given reference
network, (2) computing robustness metric values for sample
networks (i.e. obtaining theoretical results: RCF values), (3)
simulating a cascading failure in each network and quantifying
the network robustness against cascading failure empirically
(i.e. obtaining experimental results: LS and CS values), (4)
calculating the correlation between robustness metric RCF

values (i.e. theoretical results) and simulation-based LS and
CS values (i.e. experimental results), (5) assessing whether
the robustness metric quantifies the network robustness with
respect to attack-based cascading failures.

The synthetic sample networks are generated from IEEE 14
test network following the method explained in Section IV-A.
The robustness metric values (i.e. RCF ) are computed apply-
ing the theoretical approach explained in Section III on these
networks. A cascading failure is simulated in each topology
as described above in Section IV. Line 1-2 (see Figure 3)
is attacked and the network cascading failure robustness is
quantified empirically by LS and CS. This analysis is per-
formed for a set of 100 different sample networks. RCF ,
LS and CS values for the first five sample networks are
shown in Table I. It suggests that computed robustness metric
(RCF ) and empirically-obtained cascading failure quantifiers
(LS and CS) values are in line (e.g. RCF indicates Synthetic
network 1 is more robust than Synthetic network 2, and this
is also shown to be correct by the means of simulation-
based metrics LS and CS), with an exception (network 5).
Additionally, the correlation between RCF and LS-CS values
for the whole set (i.e. 100 networks) is determined. Table II
shows the result. The correlation level of around 75% between
the theoretical approach and simulation results indicates that

TABLE I
ROBUSTNESS METRIC (RCF ) AND CASCADING FAILURE SURVIVABILITY

METRICS (LS AND CS) FOR FIRST 5 SYNTHETIC NETWORKS

RCF LS(%) CS(%)
Synthetic network 1 0.7143 0.5263 0.6771
Synthetic network 2 0.6096 0.3158 0.6182
Synthetic network 3 0.7065 0.4737 0.6482
Synthetic network 4 0.7587 0.5789 0.7469
Synthetic network 5 0.7483 0.6316 0.7435

TABLE II
CORRELATION LEVELS BETWEEN ROBUSTNESS METRIC (RCF ) AND

CASCADING FAILURE SURVIVABILITY METRICS (LS AND CS) FOR 100
DIFFERENT NETWORK SETTINGS

Set size RCF -LS cor(%) RCF -CS cor(%)
100 76 75

the RCF quantifies the cascading failure robustness of a given
network to a reasonable extent.

Fig. 4. Robustness metric (RCF ) and Link Survivability (LS) values for
100 synthetic networks

To assess the effect of the number of different network
configurations (which was 100 in Table II) on the correlation
value, the analysis above is repeated for 3 different sets
of random networks. These sets consist of 1000, 5000 and
10.000 network configurations that are synthetically generated
with the reference to the IEEE 14 bus test system (see
Section IV-A). Resulting correlation levels are almost the same
for all different test sets (ranging from 74-76%).

There are two main reasons for a relatively low correlation
level (i.e. around 75%) between theoretical and experimental
results. As mentioned before, it is very important to provide a
fair initialization for each network setting. One of the condi-
tions for fair initialization is that the node-to-be-attacked has
the same electrical node significance in each sample network.
Although these node significance values are very close to each
other in our experiments, they are not exactly equal meaning
that some of networks are exposed to a higher amount of power
to redistribute than others. This biased condition results in a
decreased correlation level between RCF and LS- values.

Another factor that influences the correlation level can be
better understood when considering the RCF and LS values
plotted in Figure 4. Notice that LS has a discrete underlying
distribution meaning that it can adopt only certain values
(i.e. 1/L, 2/L, .., 1) while RCF can have any value between
RCF,min and RCF,max. This suggests that the effect of even



a very small change in input parameters (e.g. a small change
in loading level) can be observed in the aggregate RCF value
while this is not the case for LS. Consequently, a group of
RCF values is assigned to the same LS value. This results in
a decreased correlation level between the robustness metric
and the network cascading failure survivability quantifiers.
However, if both RCF and LS are approximated by a 4th
order polynomial the correlation increases to over 90%.

VI. DISCUSSION AND CONCLUSION

This paper proposes a robustness metric (RCF ) to assess the
robustness of a given power network with respect to cascading
failures. The proposed robustness metric accounts for effects
of topological properties as well as flow dynamics on network
robustness. The key factors to model for covering these effects
are (i) homogeneity of load distribution; (ii) loading level of
the network; and (iii) out-degree of each particular node. These
factors are incorporated in the robustness metric definition
by using entropy and network tolerance parameter concepts.
When simulating cascading failures in networks, the node-to-
be-attacked is selected based on electrical node significance
values. Experimental verification shows that the proposed
metric anticipates the cascading failure robustness of a given
power network.

Assessing the cascading failure robustness in power net-
works relies mainly on two aspects: the structure of the
network and the operative state. The former aspect defines the
interconnection of the components together with their specific
attributes (e.g. electrical characteristics), while the latter aspect
relates to the loading level and load distribution heterogeneity
in the network. The structure of the network is static while the
operative state in the network is continuously changing. This
dynamic character of operative state makes cascading failure
robustness of power networks also dynamic. This means that
a power grid G with a certain operative state can be assessed
as very robust at time t, while a new operative state (e.g. a
new loading profile) at time t + k can make the same grid
critically vulnerable.

Although the significance of operative state on the cas-
cading failures occurrence is emphasized by numerous re-
searchers [11], [12], [13], the existing studies most often
attempt to assess the cascading failure robustness by focusing
only on the structural aspect, and not on operative state of the
grid. Differently than existing studies, the proposed robustness
metric RCF takes both relevant aspects into account: the
topological effects and the operative states in determining
network robustness. Additionally, calculating the robustness
metric RCF does not require significant computational power
and time and it can be done in a distributed manner.

Future work will focus on increasing power network ro-
bustness by adapting power flow dynamically in a distributed
and self-organized manner. Within the context of SmartGrids,
dynamically optimizing power flow in the grid based on the
proposed robustness metric RCF has the potential to ensure a
higher level of cascading failure robustness in the network.
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